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Abstract—Silent Speech Interfaces are systems that enable
speech communication even when an acoustic signal is unavail-
able. Over the last years, public interest in such interfaces has
intensified. They provide solutions for some of the challenges
faced by today’s speech-driven technologies, such as robustness
to noise and usability for people with speech impediments. In
this paper, we provide an overview over our Silent Speech
Interface. It is based on facial surface electromyography, which
we use to record the electrical signals that control muscle
contraction during speech production. These signals are then
converted directly to an audible speech waveform, retaining
important paralinguistic speech cues for information such as
speaker identity and mood. This paper gives an overview over
our state-of-the-art direct EMG-to-speech transformation system.
The paper describes the characteristics of the speech EMG signal,
introduces techniques for extracting relevant features, presents
different EMG-to-speech mapping methods and finally presents
an evaluation of the different methods for real-time capability
and conversion quality.

Index Terms—Silent Speech Interface, Electromyography, SSI,
Biosignal

I . I N T R O D U C T I O N

WHETHER it is secret agents communicating silently
while sneaking around, like in numerous cold war

novels, or inhabitants of a space station silently talking to an
artificial intelligence, such as in Orson Scott Card’s “Ender’s
Game” – the ability use speech as a means of communication
without speaking words out aloud has been a mainstay of fiction
for decades. The approaches imagined range from sensing
inaudibly quiet sounds by recording articulator movement to
reading imagined speech directly from the brain.

Human speech communication is the most sophisticated form
of interaction. Due to its efficiency, ease of use and information
richness, it has been the focus of a lot of attention in human-
computer interaction research. The majority of all widely used
speech recognition based systems rely on speech transmitted
over air – acoustic data. However, several scenarios exist where
non-audio representations of speech might be helpful:

• Adverse Noise Conditions: Though techniques for noise-
robust ASR exist [1], loud ambient background noise can
make exploiting an acoustic speech signal challenging or
even impossible.

• Complementing Acoustic Speech: Adding a second
modality for speech representation can improve a speech
processing systems performance.

• Silent operation: Audible speech can disturb bystanders
and may also be overheard by eavesdroppers.
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• Speech Rehabilitation: Approximately 7.5 million people
in the United States have trouble using their voices accord-
ing to a survey by the National Institute on Deafness and
Other Communication Disorders [2]. Silent speech based
systems might offer new alternatives for rehabilitation [3].

While fiction is, as usual, ahead of reality by some amount,
Silent Speech Interfaces – speech interfaces that do not rely
on the presence of an audible acoustic signal – do exist,
with various alternative sensor technologies being actively
investigated by research groups:

• Surface electromyography (EMG) [4]–[8]: The activation
potentials of facial articulatory muscles are recorded with
surface electrodes, providing information about articula-
tory muscle movement during speech production.

• Brain computer interfaces based on electroencephalogra-
phy (EEG) [9], [10], near infrared sensors (fNIRS) [11],
[12] or implants in the speech-motor cortex (ECOG) [13],
[14]: Electrical (EEG, ECOG) or the hemodynamic corre-
late of brain activity is recorded to try to gain information
about the speech production process.

• Video camera based lip reading [15], [16] – a video camera
captures the movement of the mouth, and spoken words
are inferred using image processing techniques.

• Permanent Magnetic or Electromagnetic Articulography
(PMA or EMA) [17], [18]: The movement of magnets
attached to the articulators is captured by measuring
magnetic field changes using sensors around the mouth.

• Ultrasound / optical imaging of tongue and lips [19]–[22]
• Non-audible murmur (NAM) microphones [23]–[27]:

Nearly-inaudible body-conducted low-amplitude acoustic
waves are measured with a type of stethoscopic micro-
phone.

• Glottal activity detection based on electroglottography
(EGG) [28], [29] or vibrometry [30], [31]: Electrical
activity or vibration in the larynx area is measured to
infer glottal activity.

For a general overview of biosignal-based spoken interaction,
refer to the survey paper in this special issue [32]. We
additionally differentiate into four speech modalities:

1) Audible speech
2) NAM and Whisper: Recording of nearly silent signals that

don’t necessarily propagate through air, recorded using
bone-conduction or stethoscopic microphones. Although
these approaches still require an acoustic signal, the signal
does not need to be audible to humans.

3) Silent speech: Capturing information from the vocal
tract or articulatory configurations, using e.g. EMG or
PMA. These approaches do not rely on an audible signal
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only silent articulation, i.e. movement of the articulators
without sound production, is required.

4) Imagined speech: Direct interpretation of the process of
imagined speech production by capturing brain signals.

In this paper we use EMG recorded during audible speech
and perform a direct conversion to speech. Note that, while the
speech we use is audible, our system uses only the EMG signal
for conversion (The audible signal is required for training). It
is, therefore, possible to build an EMG-based system in a way
that puts it into category three – a truly Silent Speech system.
Previous work (e.g. [33], [34]) already proposed automatic
speech recognition (ASR) on EMG-based input resulting in
text output, that can be synthesized using text-to-speech systems.
However this recognition-followed-by-synthesis approach has
some limitations: First, there is an output delay based on the
additional computation time in the ASR step. Second, the ASR-
based approach is restricted to a given language and vocabulary.
Third, features like speaking rate and paralinguistic information
– e.g. speaker identity, mood, etc. – which is crucial for a natural
communication, are not transmitted.

We expect our direct feature transformation technique to
have the advantages of retaining paralinguistic information
and operating without the latency and vocabulary limitations
imposed by an ASR step. Furthermore, the proposed direct
speech synthesis needs no language information. The labeling
that provides the phonetic information required by ASR-based
speech transformation approaches introduces an additional
potential error source – this work establishes a label-free
approach.

Today, several research groups are promoting EMG-based
speech processing [8], [35]–[40]. Some investigate a particular
topic, e.g. Portuguese language specific factors [41] or focus
on peculiarities of disordered speakers [42]. Additionally, there
are multimodal approaches, i.e. the combination of acoustic
and EMG signals [42]–[44].

Thus far, there has only been little work on direct EMG-to-
speech conversion [45], [46]. Toth et al. [47] have reported
promising results with a GMM-based technique without a
speech recognition step. They use 5 EMG channels with
electrodes positioned on muscles of the articulatory apparatus,
recording 380 utterances (about 48 minutes) of parallel audible
speech and EMG data. Additionally, a speech recognition
experiment is performed using the synthesized speech output.
Restricting the testing vocabulary to 108 words, 84.3 % of
the words were recognized correctly. First results with speech
recognition on EMG recorded during silent articulation are
also presented – however, this reduces the word recognition
accuracy to 20.2 %.

Denby et al. use ultrasound images from the tongue to
directly generate a speaker’s vocal tract parameters. [19].
Hueber et al. [48] add video image information to ultrasound
data and use a combination of hidden Markov modeling and
Unit Selection to synthesize speech. The authors state that
the speech output is of decent quality for correctly predicted
sequences; however, the error number is still too high to
generate a truly usable output signal. The same authors [49]
additionally present a Gaussian Mixture Model (GMM) based
approach to convert similarly captured lip and tongue motions.

Toda et al. [50], [51] use electromagnetic articulography
(EMA) input data for a GMM-based mapping technique, which
obtains good output quality.

Although the quality of silent speech interfaces has grad-
ually improved and the used recording devices has become
considerably more affordable, many caveats still remain. Some
approaches require a laboratory environment (e.g. EMA) or
have a heavily restricted set of output units (e.g. Lam at al. [45]
train on 8 phonemes only).

Denby et al. [52] compare different silent speech modalities,
examining different mapping approaches. They value EMG for
its high potential in terms of non-invasiveness, cost, silent-usage
and other factors.

Finally, Wand et al. [35] introduced an electrode array grid,
which is also used in this paper.

The following sections present the state-of-the-art in EMG-
to-speech conversion systems. They describe the setup used
for recording EMG and speech in parallel, the corpus used
in this paper for evaluation and the feature processing used
to extract feature sequences from EMG and audio waveforms.
Several mapping techniques are described: EMG-to-speech
feature transformation based on GMMs, Neural Networks and
Unit Selection. The quality of their output is evaluated using
objective criteria as well as subjective listening tests.

I I . C H A R A C T E R I S T I C S O F T H E F A C I A L E M G
S I G N A L D U R I N G S P E E C H P R O D U C T I O N

EMG is a biosignal that consists of electrical currents
emitted from muscles during their contraction, representing
neuromuscular activity [53]. Recorded as a surface signal,
it is the summation of the activity of many different motor
units, attenuated while crossing different tissue layers and is in
practice overlaid by ambient electromagnetic noise and artifacts.
The investigation into the relationship between EMG and speech
has been ongoing for several decades [54]–[56].

Fig. 1: Spectrogram of the acoustic signal (top) and time-series plot of
the EMG signals from two channels for part of the phrase “babababa”.
Noise in EMG data was filtered out using a spectral subtraction
technique [57] for visualization purposes.

As a first investigation we compare a simultaneously recorded
audio signal with the EMG signal of simple spoken consonant-
vowel phrases. Fig. 1 gives an example for a part of the phrase
“babababa”, showing the acoustic spectrogram and EMG time
series – one channel from the chin array and one channel from
the cheek array (Compare Fig. 4 for electrode positions). A
couple of observations can be made:
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• The EMG signals are noticeably different from each other,
especially in onset and breakoff.

• The acoustic signal is delayed with regards to the EMG
signal, due to an effect known as Electromechanical Delay
(EMD) [58]. We compensate for this signal delay with
a constant delay of 50 ms [59] and contextual feature
stacking (see Section III-A).

I I I . E M G - T O - S P E E C H T R A N S F O R M AT I O N

The general framework of the proposed EMG-to-speech
approach is shown in Fig. 2. It consists, broadly, of two stages:

1) a training stage (green arrows),
2) a conversion stage on unseen data (blue arrows).

For training, we use simultaneously recorded EMG and acoustic
data (see section IV). The data consist of EMG feature
vectors as source data and audio feature vectors as target
data. See Sec. III-A for details on EMG and acoustic signal
processing. The direct transformation from EMG features
into acoustic representations is realized either by Gaussian
Mapping (Sec.III-C), Unit Selection (III-D) or Deep Neural
Networks (III-E). Vocoding creates the final speech wave files
from the generated acoustic representations. This step is done
using Mel Log Spectrum Approximation (MLSA) [60]. While
this is a relatively simple vocoding scheme, our evaluation
of other schemes has not yielded significant improvements
– though it may be prudent to re-evaluate this in the future
after improvements to mapping methods have increased quality
somewhat.

Fig. 2: Processing steps of EMG-to-speech transformation. Green
arrows represent training data flow, blue arrows represent data flow
during EMG-to-speech application.

A. Signal Preprocessing

We use a set of time-domain based features first introduced
by Jou et al. [59] (TD features). For calculating TD-features,
the signal is first split into a high-frequency and low-frequency
part with a triangular filter with a cutoff frequency of 134 Hz
implemented using a double moving average. The signal is then

windowed rectangularly with a frame size of 27 ms and frame
shift of 10 ms, respectively. The TD features, calculated for
every frame, are defined as (With ZCR being the zero-crossing
rate and xlow and xhigh being the low and high frequency parts):
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The TD feature vectors are stacked with adjacent vectors to
introduce contextual information of the immediate past and
future into the final feature. The stacking is performed for 15
frames into the past and 15 frames into the future, resulting
in stacked TD15 feature vectors 31 frames in length. This
relatively high amount of contextual information achieved good
results in ASR experiments and partially compensates for the
electromechanical delay effect.

Together, these parameters result in a feature dimensionality
of 5425 (35 channels – compare section IV – times 5 features
times 31 because of stacking). To reduce the dimensionality
before training an EMG-to-speech conversion system, linear
discriminant analysis (LDA) is applied. An LDA matrix that
maximizes discriminability of phone sub-states (the beginning,
middle and end of each phone) is calculated based on labels
force-aligned to the EMG signal using the simultaneously
recorded audio signal, taking EMD into account as a 50ms
time shift. The signal is transformed by this matrix and then
truncated to the 32 highest-discriminability dimensions.

For the acoustic signal, 25 Mel-Frequency Cepstral Coeffi-
cients (MFCCs) [61] and the speech fundamental frequency
(F0) are used. They are extracted as filter parameters of a
MLSA filter and F0 estimates in 32 ms Blackman-windowed
frames with a 10 ms shift (resulting in frames time-aligned
with the EMG feature frames).

B. Vocoding

For methods where the output of the mapping is a sequence
of MFCCs and F0s, it is necessary to convert those features back
to an audio waveform. In our vocoding step, this is achieved
using the MLSA filter method [60]. This is possible since the
MFCCs and F0s were extracted as MLSA filter parameters. The
vocoding step is the same for all mapping methods in which
it is used (i.e. all but Unit Selection with direct concatenative
synthesis).

C. Feature Transformation using Gaussian Mixture Models

GMMs are a commonly used technique in voice conversion
[62]. The variant used in this work is based on the GMM-based
articulatory-to-acoustic mapping introduced by Toda et al. [51].

To train the feature transformation, parallel source (EMG)
and target (MFCC/F0) vectors are stacked to create joint feature
vectors. A GMM is fitted to these joint vectors. The joint
GMM probability density can then be used during conversion
by finding the MFCC/F0 feature vector that maximizes the
combined likelihood given the EMG feature vector and joint
density, i.e. the MFCC/F0 feature vector that, stacked with
the EMG feature vector, is assigned the highest likelihood by
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the GMM. This is done by calculating the expected value
for the MFCC/F0 feature vector given the source vector and
GMM. [63], [64]:

We have thoroughly investigated the use of GMMs in
EMG-to-Speech conversion, most recently their performance
depending on the number of mixtures used, in a session-
dependent as well as a session-independent setting [65]. It
therefore serves as a baseline to which we compare other
transformation methods.

D. Feature Transformation using Unit Selection

Unit Selection was first introduced in the 1980s [66] and
has since become a popular approach for speech synthesis [67].
To perform speech synthesis or conversion with Unit Selection,
short segments of audio data are selected from a database
(called a codebook) and then concatenated, sometimes with
overlap, to create an output audio sequence. Recently, we have
introduced EMG-based Unit Selection [68] for direct EMG-to-
speech conversion.

The unit database (the codebook) is created by extracting
segments of l frames length – the unit width – from a set of
training utterances. The segments are extracted synchronously
for the EMG source features and the acoustic target features.
Each such pair of parallel source- and target feature segments
is called a codebook unit. To get a large variety of units, this
is done not with one unit being extracted starting after the
previous one, but instead with a unit shift of one frame (i.e.
with an overlap of l − 1 frames between units). Together, the
extracted units make up the codebook.

To convert an EMG signal to audible speech, a sequence
of test units is created similarly to how codebook units were
extracted – however, there is only a source (EMG) feature
sequence and thus, no audio data in the units. Here, the unit
shift is not 1 but is instead optimized on a development set. The
result of this is an output unit sequence made from codebook
units, with one codebook unit chosen for each test unit.

For each of the test units, a codebook unit is selected
according to the combination of two cost functions, a target cost
and a concatenation cost. The target cost function measures
how well a codebook unit fits the given test unit. It is calculated
between the test- and codebook units’ EMG segments.

The concatenation cost function is calculated between
codebook units audio segments. It measures how well the
units’ acoustic segments fit to each other when they are directly
adjacent in the output unit sequence, which enables a smooth
transition between the audio segments. Using a weighted sum
(with empirically determined weights) of these two costs as the
selection criterion, the unit selection process is a search for the
sequence of codebook units that minimizes the total cost given
the test unit sequence. In our previous work [68] [69], we have
evaluated different functions for target and concatenation cost
in Unit Selection EMG-to-speech conversion, achieving the
best results with the mean cosine similarity.

Fig. 3 illustrates the complete unit search process. If the
concatenation cost weight is non-zero, the search for the
ideal unit sequence has to consider the entire sequence at
the same time. This can be done efficiently using the Viterbi
algorithm [70] (as a Viterbi search on a fully connected graph

with the units as nodes and the weighted costs as edge weights).
Due to the large number of choices in each step, a full Viterbi
search is still computationally expensive – in practice, it is
better to just consider a limited number of active paths in
each step. Taking this to the extreme of considering only one
active path, it is possible to use a greedy algorithm to always
select the best next unit given the already selected units. When
the concatenation cost is zero (i.e. the concatenation cost is
ignored), the restricted searches are equivalent to a full Viterbi
search, otherwise, they trade computation time for correctness.

Test EMG Sequence

Test Unit 1
Test Unit 2

Test Unit 3

Selected Unit 1

Selected Unit 2

Selected Unit 3

argmin(...)

Codebook

...

...

...

...

Test EMG

distfunc( , )

distfunc( , )

Fig. 3: Illustration of the search for the optimal unit sequence. The
EMG sequence is split into test units, on which the sum of unit
costs (sum of units’ EMG target and audio concatenation costs) is
minimized.

After determining the optimal unit sequence, the overlapping
audio feature segments of the output unit sequence are used
to create the final output MFCC/F0 sequence. This is done by
taking the mean of all selected units’ frames that correspond
to one input frame. This output MFCC and F0 sequences can
then be passed to the MLSA vocoder for speech generation.

We recently advanced this Unit Selection technique using a
clustering approach [71] that substantially reduces the number
of units in the codebook and thus the computation time,
while improving the output quality. The main idea behind
this clustering is the reduction of audio artifacts by creating
units that are more representative of a single relation between
EMG and audio. This has the benefit of reducing sensitivity to
outlier units, a single one of which can already greatly reduce
intelligibility. Additionally, it eliminates redundancies in the
codebook, which reduces computation time requirements for
the conversion process.

The base codebook units (calculated as above) are clustered
in two stages, using the k-means algorithm. First, units are
clustered according to the audio feature vectors of all audio
frames covered by each unit. Second, the units assigned to
each audio cluster are clustered (separately for each cluster)
according to the EMG feature vectors covered by each of these
units. Given these cluster assignments, a set of cluster units is
created by calculating the mean audio and EMG feature frames
over all units assigned to a cluster. These units are then used
as the new codebook in the Unit Selection conversion process
described above.

For our evaluations, we used a cluster-based system with 6000
clusters based only on audio features, with weight parameters
optimized on a development set.

E. Feature Transformation using Neural Networks

Artificial Neural Networks are models whose power lays in
the interconnection of many simple units (“neurons”) that,
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together, can perform complex calculations. This section
describes EMG-to-Speech conversion with two different kinds
of neural network models: Feedforward deep neural networks
(DNNs), and Long-Short-Term Memory (LSTM) networks.

EMG-based neural network approaches have been introduced
for phone classification [46] and, more recently, for direct EMG-
to-speech feature transformation [72]. A similar articulatory-to-
acoustic mapping approach based on Deep Neural Networks
was introduced by Bocquelet et al. [73]. They trained on
electromagnetic articulography (EMA) data which was recorded
synchronously with the audible speech sounds.

1) Feedforward DNNs: Feedforward deep neural networks
are the simplest form of the DNN architecture. They are used
for frame-based EMG-to-speech conversion in our previous
work [72]. The basic component of the networks is the rectified-
linear neuron. Many such neurons are arranged into layers,
which are then connected with all units from one layer feeding
into each unit of the next layer. We construct a 3-hidden-layer
feedforward neural network, separately for MFCCs and F0s.

The size of the input- and output layers is determined by the
the input- and output feature dimension. The dimension of the
hidden layers is a free parameter and has to be optimized. In
our previous work [72], we started with a general bottleneck
shape, following earlier experience with processing whispered
speech [74]. Several sets of layer sizes (keeping the same
overall network structure) were evaluated on a development
set. Layer sizes of 2500 neurons for the first, 512 neurons
for the second and 1024 neurons for the third hidden layer
gave the best performance. These five layer neural networks
are trained on parallel EMG and audio feature vectors using
stochastic gradient descent with 1024 sample minibatches, a
momentum of 0.9 and a learning rate of 0.001 for the first
three epochs and then 0.01 for all following epochs. The sum-
squared-error is used as the loss function. Training is stopped
after the loss on a validation set (held out from the training
set) stops decreasing. To avoid bias towards numerically larger
EMG- or audio features, the signal is normalized to zero mean
and unit variance. Dropout [75] is used to reduce overfitting.

After the training process has converged, we get a set of
weight and bias matrices which fully define a mapping function
from input EMG features to target acoustic speech features.

2) Long-Short-Term-Memory Networks: We also evaluate
the direct EMG-to-speech approach with LSTM networks,
which are state-of-the-art for several of problems, e.g. recog-
nition of speech [76], [77] or hand-writing [78]. LSTMs,
introduced in 1997 by Hochreiter et al. [79], are recurrent
neural networks and enable a long-range temporal context by
using memory cell units that store information over a longer
period of time, together with non-linear gating units that regulate
the data flow into and out of the cell. The usage of LSTMs
in EMG-to-speech conversion is motivated by their ability to
cope with temporal dependencies directly as part of the model
instead of requiring the stacking of feature vectors.

The LSTMs used in this work are bidirectional LSTMs, as
described by Graves et al [80]. We chose to use a training
momentum of 0.9 in all our networks, as LSTM research [81]
and our own preliminary experiments have shown that this
parameter has only minor influence on LSTM performance.

To determine the number of memory blocks per layer and
learning rate, we varied numbers from literature and optimized
them for our task and our own input data. The speech feature
enhancement by Wolmer et al. [82] used three hidden layers,
consisting of 78, 128 and 78 memory blocks. We use this as
our basis, varying the number of hidden layers (from 1 to 4)
and memory blocks per layer (60, 80 and 100), and evaluate
several learning rates for each set of parameters. We obtained
the best results using two hidden layers, consisting of 100
and 80 memory blocks, with a learning rate of 3 · 10−7. To
avoid overfitting, we stopped training after 20 epochs without
improvement of the validation sum of squared errors. Input and
output data was normalized to zero mean and unit variance.

I V. R E C O R D I N G S E T U P A N D D ATA C O R P U S

To capture EMG signals, we used the OT Bioelettron-
ica (http://www.otbioelettronica.it) EMG-USB2 multi-channel
EMG amplifier. Data acquisition using electrode-arrays [35]
is a step towards practical usage, as they are easier to attach
than the single electrodes conventionally used [8], [47]. and
less time consuming. In addition, a higher number of EMG
channels is available due to a large number of electrodes.

After some initial experiments, we chose a 2,048 Hz sampling
frequency, 3 Hz cutoff frequency high-pass filter and a low-pass
filter with a cutoff frequency of 900 Hz. The amplifiers Driven
Right Leg (DRL) noise reduction circuit [83] was used to
reduce common mode (e.g. line noise) interference. Electrode
gel was applied in order to reduce electrode/skin impedance.
Double-sided adhesives were used for attachment.

Following our initial experiments, we decided on capturing
signals with two arrays: A cheek array consisting of 4 rows of
8 electrodes with 10 mm inter-electrode distance (IED), and a
chin array with a single 8 electrodes row with 5 mm IED (The
numbering of the final electrode channels is shown Fig. 4).

Fig. 4: Left: Electrode array positioning; 8 × 4 electrode grid on the
cheek, small linear array under the chin. Right: Channel numbering
of the 4 by 8 cheek electrode array, and the 1 by 8 chin array.

Bipolar derivation is used, where the potential differences
between adjacent channels in each column are calculated. This
results in 35 bipolar EMG channels – 28 from the 8 × 4
cheek electrodes and 7 from the 8 chin electrodes. To alleviate
problems with detached electrodes, each sessions’ recordings
were inspected manually and visibly faulty channels were
excluded for that session.

The chosen electrode positioning was the best compromise
between getting rich information about the muscle movements
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and allowing for minimal interference with the subjects articula-
tion process. According to extensive experiments on electrode
positioning [84], EMG-based speech processing requires, at
the very least, signals from the cheek area and the throat (to
capture tongue activity).

Recordings were done on a laptop with the in-house
developed recording software BiosignalsStudio [85]. Each
recording consists of a set of read phonetically balanced English
sentences from the broadcast news domain.. In order to assure
consistent pronunciation of words and to detect errors in the
setup (e.g. detached electrodes), all recordings were supervised
by a member of the research team.

All sentences were recorded with an EMG-recording system
and a standard close-talking headset in parallel. An additional
channel contains an analogue marker signal marking the begin
and end of each utterance. Each of the recorded sentences was
displayed on a screen (in random order) and the speakers were
asked to hold the recording button, then read the sentence in
normal, audible speech and release the button. The resulting
utterance was considered valid if the pronunciation of each
word in the sentence had been articulated properly in English.
In case of mispronunciations or disfluencies, the utterance was
repeatedly recorded until the pronunciation of the complete
sentence was valid. Furthermore, the subjects were allowed to
practice the pronunciation.

TABLE I: EMG-Audible Data Corpus Information

Speaker-
Session

Length [mm:ss] # of utterances

Sex Train Dev Eval Train Dev Eval

S1-Single m 24:23 02:47 01:19 450 50 20
S1-Array m 28:01 03:00 00:47 450 50 10
S1-Array-Lrg m 68:56 07:41 00:48 984 109 10

S2-Single m 24:12 02:42 00:49 447 49 13
S2-Array m 22:14 02:25 01:10 450 50 20

S3-Array-Lrg f 110:46 11:53 00:46 1,771 196 10

Total 278:32 30:28 05:39 4,552 504 83

The corpus consists of six sessions total, from three speakers,
with varying amounts of data, each split into a train(ing),
dev(elopment) and eval(uation) set. Four sessions incorporate
around 500 phonetically balanced English utterances that are
based on a corpus introduced in our previous work [8]. Two
larger sessions exist (tagged with the suffix “Lrg”). These
incorporate utterances from the Arctic [86] and TIMIT [87]
corpora, resulting in a total of 1,103 utterances for the smaller
and 1,977 utterances for the bigger of the large sessions. Table
I lists the durations of the recorded sessions and the number
of utterances per session. We additionally used two sessions
with the single-electrodes setup from our previous work [8]
(tagged with “Single” instead of “Array”), which allows us to
compare array with single-electrodes setups.

V. E VA L U AT I O N O F T R A N S F O R M AT I O N M E T H O D S

This section presents different subjective and objective
evaluations [88] for the presented EMG-to-speech approaches.

In our experiments, we used both the Computational Network
Toolkit [89] and the brainstorm [90] neural network implemen-
tations. For the evaluation of LSTM networks, we used the
CURRENNT implementation [91].

A. Run-Time Evaluation

Since we hypothesized that one of the advantages of the direct
synthesis approach is its fast processing time, we evaluate the
real-time capabilities of the different EMG-to-speech techniques
using the conversion time of the evaluation set. We only
state pure conversion time for mapping EMG features to
MFCC features, as MLSA vocoding and file-I/O are assumed
to be constant between the different feature transformation
approaches and are therefore omitted.

The input EMG feature dimensionality depends on the
mapping approach. We use two different input EMG feature
sets: High-dimensional TD15 features and those features
reduced to 32 dimensions using LDA. The TD15 features
dimensionality depends on the amount of usable channels in
a session, ranging from 5,425 dimensions on the 35-channel
array setup to 930 dimensions on the single electrodes setup.
The Gaussian mapping uses 64 Gaussian mixtures. The number
of Gaussians and conversion time are linearly related(e.g. using
32 Gaussians approximately cuts the conversion time in half).

All measurements were obtained on an Intel Core i7-2700
CPU running at 3.5 GHz. The results of the evaluation can
be found in Table II. The real-time (RT) factor is the ratio of
feature transformation time to the duration of the converted
utterances – a RT factor of one means that each second of
input requires 1 second pure feature transformation time. Note
that all results were obtained by calculating the time taken to
convert the entire evaluation set as one batch.

The Unit Selection needs to compare with every codebook
unit. Therefore, the time Unit Selection takes for feature
transformation, depends on the amount of codebooks (i.e.
training data). This means that mapping requires considerably
higher feature transformation times which are less useful for
a real-time setup (RT-factor > 20) and the results are not
presented in detail. Even with the proposed unit clustering
approach, which considerably reduces computation time, the
real-time factor of our implementation clearly stays above 1.

TABLE II: Run-time comparison of transformation methods
Time taken for feature transformation in [sec] (RT-Factor)

Session DNN (TD15) LSTM (TD15) LSTM (LDA) GMM (LDA)

S1-Single 2.9 (0.02) 26.6 (0.16) 5.6 (0.03) 42.7 (0.26)
S2-Single 2.9 (0.02) 23.4 (0.14) 5.4 (0.03) 41.4 (0.26)
S1-Array 12.3 (0.07) 161.4 (0.90) 6.1 (0.03) 45.7 (0.25)
S2-Array 10.2 (0.07) 144.9 (1.00) 4.7 (0.03) 35.5 (0.24)
S1-Arr-Lrg 14.6 (0.03) 139.9 (0.30) 15.5 (0.03) 118.7 (0.26)
S3-Arr-Lrg 16.2 (0.02) 155.4 (0.22) 23.4 (0.03) 181.5 (0.25)

The model-based neural network and Gaussian Mapping
approaches conversion times do not depend on the amount of
training data, as they only need to load the previously trained
models. However, input dimensionality influences them heavily.
The neural network is faster than all other approaches. Even
with high-dimensional feature input (S1-Array and S2-Array
having a input feature vector size of 5,425 dimensions), the
mapping is faster than 0.1 times real-time, making this method
the preferred choice for an online EMG-to-speech system.
Using the reduced 32-dimensional feature input, Gaussian
mapping still achieves 0.25 times real time, fast enough
for real-time use. While this study compares the different



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 7

EMG mapping approaches, details of an implementation with
optimized real-time speech output can be found in [92].

B. Objective Evaluation using Mel-Cepstral Distortion

To objectively evaluate our results, we employ the Mel-
Cepstral Distortion (MCD) score [93], defined as a scaled
Euclidean distance between MFCC vectors excluding the first
coefficient, computed between a synthesized utterance and the
reference utterance. Since MCD represents a distance measure,
lower numbers imply better results.
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Fig. 5: MCD comparison on the evaluation set of all investigated
EMG-to-speech mapping approaches: Deep Neural Networks (DNN),
Long-Short-Term Memory Networks (LSTM), Unit Selection (UnitSel)
and Gaussian Mapping (GausMap). Error bars show standard deviation.

Fig. 5 shows that while there is only a small difference
between LSTM and Unit Selection (mean MCD of 5.46 vs
5.42), DNNs give the best results by a significant margin
(p < 0.01) with a mean MCD of 5.21. Gaussian Mapping
obtains the highest (worst) average MCD with 5.69. The best
session-dependent result is achieved on the Spk1-Array-Large
session with an MCD of 4.56.

A comparison of single-electrode versus array-based setups
shows no clear tendency in terms of MCD. While the first EMG-
to-speech approach presented by Toth et al. [47] introduced an
MCD of 6.37, our current results improve the best performance
to 4.51.

C. Objective Intelligibility Evaluation using ASR

In addition to the MCD evaluation, we decode the syn-
thesized speech output using an automatic speech recognition
(ASR) engine [8] to evaluate the intelligibility of the synthesized
speech more directly compared to using spectral similarity
measures. The speech decoder we use is based on three-state
left-to-right fully continuous Hidden-Markov-Models using
bundled phonetic features (BDPFs), an advanced variant of
articulatory features [94]. Details about the recognition system
can be found in our previous work [8].

The acoustic speech recognizer is trained on the acoustic
output that was generated from the EMG training set input and
finally tested on the synthesized evaluation set. This is done on
each of the proposed mapping techniques. The recognizer uses
a trigram language model. To enable comparability to EMG-
based speech recognition on the same data [35], we restrict the
decoding vocabulary to 3 different sizes: 108, 905 and 2,111
words, including variants. The Word Error Rate (WER) is used
to measure the performance of the ASR.

The results of the ASR evaluation are presented in Fig. 6.

Fig. 6: Acoustic speech recognizer based comparison of the EMG-to-
speech approaches using three different decoding vocabulary sizes:
108, 905 and 2,111 words, evaluated for two different speakers.

The DNN approach consistently obtains the best word error
rates, confirming the results that have been achieved in the
MCD evaluation. The Gaussian Mapping output gets second
best results, outperforming LSTM and Unit Selection. As the
Gaussian Mappings GMMs are trained on MFCCs, while the
ASR acoustic model GMMs are trained on phone classes, a
systematic bias of the evaluation towards GMMs is unlikely.

Comparing the obtained WER to our previous work that
uses a comparable setup with an EMG-based ASR system [35],
these results are encouraging. Wand et al. [35] achieve an
average WER of 10.9 % using a vocabulary of 108 words with
160 training utterances, while we report a mean WER of 7.3 %
using our synthesized speech approach. Toth et al. [47] state
that “WER results for EMG-to-speech are actually better than
results from training the ASR system directly on the EMG
data”. The increased amount of training data may result in the
fact that we get even better results. While a direct comparison is
difficult, we have shown that good performance can be achieved
when the synthesized output is used on an ASR system.

D. Naturalness Evaluation using Listening Tests

To evaluate how an end-user judges the naturalness of the
output of the EMG-to-speech conversion, we evaluate the
F0 generation, which is the essential component for prosody
generation. Is the generated F0 signal stemming from EMG
better than an F0 signal that is generated without knowledge
of the input or even omitted? To investigate this question
we conduct a preliminary experiment: We use the target
MFCCs from the reference audio file (allowing us to factor
out intelligibility), and generate three different excitations:

1) the mapped EMG-to-F0 output,
2) white Gaussian noise, resulting in unvoiced – whisper-

like – speech signal, entitled 0 F0
3) a constant flat F0 contour, resulting in voiced, robot-like

acoustic output.
We also add two variations of the reference speech recording:
the original unaltered (reference), plus the re-synthesized
reference recording (resynth). The latter one is generated by
using extracted speech features (MFCCs + F0) from the target
audio with the MLSA filter to produce a “re-synthesized”
reference. This contains the quality degradation from the
acoustic preprocessing and MLSA vocoding steps and thus
represents the best output we can achieve with our EMG-
to-speech setup. A listening test is conducted to evaluate
naturalness. The participant is asked to answer the question
“How natural does the presented speech recording sound?, please
rate between very unnatural and very natural.” This follows the
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naturalness test from the Blizzard challenge [95]. A continuous
slider, which is internally scaled on the interval between 0
and 100, is given and the mentioned five output variations are
presented in randomized order. We randomly selected three
different utterances from four different speakers, resulting in 12
utterances – each of the 12 utterances synthesized in 5 variations.
This results in a total of 60 played to each participant. The
following is the result of this evaluation performed with a total
of 20 participants. The resulting scores are shown in Table III.

TABLE III: Naturalness evaluation of transformation methods
Reference Resynthesized EMG-to-F0 Zero F0 Flat F0

Score 81 41 28 22 7

The highest drop in naturalness can be found between
reference and resynthesized output. EMG-to-F0 mapping
significantly (p < 0.01) gives the most natural output among
the three F0 generation methods. 0 F0 obtained the second
best naturalness score, while flat F0 was perceived worst. This
implies that the whisper-like output is regarded more natural
than the robotic-like F0 generation. This implies the superiority
of the EMG-to-F0 mapping over simple artificial F0 generation.

E. Intelligibility Evaluation using Listening Tests

Since the MCD score does not give any insights to the
generated naturalness or prosodic information, we conduct
a set of subjective listening tests, where participants were
asked to, as above, compare the outputs of the proposed EMG-
to-speech systems to each other and to the given reference
and resynthesized reference, this time asking listeners to rate
intelligibility. This comparative approach is used since overall
intelligibility is low – only some utterances can actually
be understood, making a human-transcription approach to
intelligibility evaluation hard to use.

Ten different evaluation-set utterances were randomly se-
lected and each of them is synthesized in 5 variations. Thus, a
total of 50 utterances are played to the listening test participant.
10 listeners participated in the test. The results can be seen in
Fig. 7. On average, the participants preferred the DNN-based
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Fig. 7: Listening test preference comparison of all investigated EMG-
to-speech mapping approaches.

output in more than 50 % of the cases, while Unit Selection
was never preferred in a single utterance.

F. Spectrogram Comparison

To visualize the final speech output, Fig. 8 depicts the
spectrograms from the synthesized DNN-based EMG-to-speech

output (on bottom) and additionally the resynthesized reference
signal from an exemplary utterance taken from Spk-1-Array-
Large (on top). The similar spectral shape is recognizable.
However, there are also visible artifacts, the investigation of
which may lead to quality improvements: Occasional minor
single-frame artifacts (Marked with the ? symbol) and an overall
blurring of the spectrum in both the time and frequency.

Fig. 8: Spectrograms of the utterance “He is trying to cut some of the
benefits.”, reference on top, DNN-based EMG-to-speech on bottom.

V I . C O N C L U S I O N

This paper introduced a speech synthesis technique to directly
convert surface EMG signals of the articulatory muscles to
audible speech. This approach has multiple advantages over
a recognition-based conversion. First, There is no restriction
to a given phone-set, vocabulary or even language. Second,
paralinguistic information like speech cues for speaker mood
and emotion and the characteristics of a speakers voice can
be preserved, as they are implicitly modeled by the direct
transformation. Third, direct mapping enables faster processing
compared to EMG-to-text-to-speech and is therefore suitable
for real-time use, enabling feedback to the speaker.

Four transformation approaches were presented: GMMs,
DNNs, LSTMs and Unit Selection. Several sets of parameters
for these methods were evaluated on a development data set.
Comparative evaluations on a held-out evaluation set revealed
that out of our current approaches, the Deep Neural Network
based method performs best in real-time behaviour, naturalness
and intelligibility. The feasibility of real-time processing was
investigated and evaluated with a real-time factor lower than
0.1 using the proposed feed-forward DNNs.

In the future, we hope to further improve the real-time
latency and output quality and investigate the effect of co-
adaptation. We hope to improve intelligibility to the point
where most converted utterances can be understood by further
investigating the properties of the speech EMG signal and by
incorporating prior knowledge (such as linguistic information)
into the conversion process.
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