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Inma Hernáez Rioja1, Jose A. Gonzalez-Lopez2, Eva Navas1, Jose Luis Pérez Córdoba2, Ibon
Saratxaga1, Gonzalo Olivares 3, Jon Sanchez1, Alberto Galdón3, Victor Garcı́a Romillo1, Mı́riam
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Abstract
ReSSInt aims at investigating the use of silent speech interfaces
(SSIs) for restoring communication to individuals who have
been deprived of the ability to speak. SSIs are devices which
capture non-acoustic biosignals generated during the speech
production process and use them to predict the intended mes-
sage. Two are the biosignals that will be investigated in this
project: electromyography (EMG) signals representing electri-
cal activity driving the facial muscles and invasive electroen-
cephalography (iEEG) neural signals captured by means of in-
vasive electrodes implanted on the brain. From the whole spec-
trum of speech disorders which may affect a person’s voice,
ReSSInt will address two particular conditions: (i) voice loss af-
ter total laryngectomy and (ii) neurodegenerative diseases and
other traumatic injuries which may leave an individual para-
lyzed and, eventually, unable to speak. To make this technology
truly beneficial for these persons, this project aims at generat-
ing intelligible speech of reasonable quality. This will be tack-
led by recording large databases and the use of state-of-the-art
generative deep learning techniques. Finally, different voice re-
habilitation scenarios are foreseen within the project, which will
lead to innovative research solutions for SSIs and a real impact
on society by improving the life of people with speech impedi-
ments.
Index Terms: Silent speech interfaces, brain to speech conver-
sion, EMG to speech, speech synthesis, voice conversion, deep
neural networks.

1. Introduction
Speech is the first and foremost means of human communica-
tion. Unfortunately, many people are not able to speak, in par-
ticular those who have lost this ability through illness or dis-
ability. There are no many studies providing specific data about
the prevalence of this disability. In [1] the authors conclude that
0.4% of the European population suffer from a speech impedi-
ment. In a later survey from 2011 [2], it is reported that 0.5%
of people in Europe present ‘difficulties’ with communication.
Focusing on Spain (data from the Spanish National Institute for
Statistics (INE) published in 2008) there are more than 410,000
people with a disability to produce spoken messages [3]. For in-
stance, laryngectomy patients (∼1200 total laryngectomies are
performed every year in Spain [4]), whose voice box has been

completely removed to treat larynx cancer, can no longer speak
in a conventional way after the operation. Speech is also af-
fected after brain damage, spinal cord injuries or neurodegen-
erative diseases such as amyotrophic lateral sclerosis (ALS), a
disease which is expected to increase worldwide by 69% be-
tween 2015 and 2040 [5] due to an aging population and im-
proved public healthcare. As this disease progresses, individ-
uals can no longer communicate verbally and assistive devices
that rely on nonverbal signals are needed for communication.

Voice loss is not only a problem for efficient communica-
tion, but also deprives the speaker of a central personal char-
acteristic (namely, his/her own voice) which can in turn lead
to occupational disability, personal isolation, and clinical de-
pression [6]. In the absence of clinical procedures for repair-
ing the damage caused by the above disorders, several meth-
ods are used to restore communication. However, all traditional
methods are, in general, far from ideal. For laryngectomized
patients, the ‘gold-standard’ method for voice restoration, the
tracheoesophageal valve, requires frequent replacement every
3-4 months due to biofilm growth [7] and produces a mascu-
line voice disliked by female patients. The electrolarynx, on the
other hand, despite being relatively easy to use and safe, pro-
duces a very robotic and monotone voice. Esophageal speech,
a method of speech production that involves oscillation of the
esophagus, sounds gruff and masculine and is difficult to master.
Additionally, esophageal speech is less intelligible both by hu-
mans and machines ( [8,9]), which makes voice interaction with
computer very difficult. Although voice conversion strategies
have been investigated to improve the quality and intelligibility
of these voices, there is still margin for improvement [10, 11].

Things are even worse for people who have suffered a brain
stroke or neurodegenerative disease. These patients normally
find themselves struggling with communication and need to use
alternative methods, such as augmentative and alternative com-
munication (AAC) devices, to communicate with their family
and caregivers. These devices, usually with rates lower than 15
words per minute, are only suitable for short conversations.

In recent years, SSIs [12–14] have emerged as a promising
alternative to restore oral communication by decoding speech
from non-acoustic (silent) speech-related biosignals generated
during speech production. Lip reading is the best-known form
of silent speech communication. A variety of sensing modali-
ties have been investigated to capture those biosignals, such as
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vocal tract imaging [15], electromagnetic articulography (mag-
netic tracing of articulator movements) [16, 17], EMG [18–20],
which captures facial muscle activity using surface electrodes,
and iEEG [21–23], which captures the electrical activity in the
brain. Since SSIs allow to capture speech without requiring any
acoustic signal at all, they offer a fundamentally new solution to
restore communication capabilities to speech-disabled persons.

The project described in this paper will investigate SSIs-
based communication systems for restoring vocal communica-
tion to individuals who have been deprived of the ability to
speak. In particular, ReSSInt will address two user groups:
total-laryngectomy patients and individuals affected by brain
damages. Each speech impairment will be addressed by a spe-
cific interface: EMG and iEEG. In the following sections we
present the main characteristics and relevant previous works us-
ing these interfaces. We also describe the main objectives of the
project and how it has been structured to achieve the objectives.

2. Silent Speech Interfaces
Two approaches have been proposed to decode speech from
silent, speech-related biosignals [14]: silent speech-to-text and
direct speech synthesis. In the first approach, automatic speech
recognition (ASR) algorithms trained on silent speech data are
used to decode speech from the input data. Text-to-speech
(TTS) software can then be used to synthesize speech from the
decoded text if required. Several works have shown promising
results on silent speech-to-text for a variety of methods. For in-
stance, in [24], a EMG-based silent speech recognizer was pro-
posed. The system was evaluated on a corpus of phonetically-
rich sentences recorded by n = 8 healthy persons, achieving
a word error rate (WER) of 16.8%. In [25], EMG-based silent
speech recognition was evaluated as assistive communication
device for n = 8 laryngectomized patients, achieving an aver-
age WER of 10.3%.

Although still in a more preliminary stage, speech decod-
ing from recordings of neural activity in anatomical regions in-
volved in continuous speech production has also been shown
to be feasible. Due to the potential advantages of the brain-
to-text approach, breakthrough advances have been achieved in
recent years. Thus, [26] demonstrated that phonetic features,
such as place and manner of articulation, and voicing status, can
be decoded during continuous speech production from eletro-
corticography. Mugler et al. [27] was the first study report-
ing on decoding the full set of phonemes for American En-
glish, obtaining up to 36% accuracy when classifying phonemes
within word productions and up to 63% accuracy for a sin-
gle phoneme. The first study to address the task of decod-
ing continuous speech from iEEG recordings was [21]. Seven
patients undergoing surgery for epilepsy treatment where im-
planted with electrocorticography (ECoG) sensors (a type of
intracranial EEG technique where electrode strips are places di-
rectly over the exposed surface of the brain) and, later, speech
and ECoG signals were simultaneously recorded while the sub-
jects read texts aloud. Acquired brain signals were used to train
speech recognizers for each subject. Up to 75% word accu-
racy was reported when the vocabulary consisted on 10 possible
words, and up to 40% when the user could choose between 100
words.

2.1. Direct speech synthesis from silent speech data

Though appealing, the silent speech-to-text approach lacks the
real-time capabilities (i.e. low latency) that a SSI system for

natural human speech communication would require. In this
regard, previous studies have provided estimates on the maxi-
mum latency for an ideal SSI system. In oral communication,
100 to 300 ms of propagation delay causes slight hesitation on
a partner’s response and beyond 300 ms causes users to begin
to back off to avoid interruption [28]. Studies on delayed au-
ditory feedback, in which subjects received delayed feedback
of her/his voice, found disruptive effects on speech production
in subjects with delays starting at 50 ms and maxing out around
200 ms [29]. Altogether, these results suggest a ∼50 ms latency
for an ideal SSI system, though latencies up to ∼100 ms may
still be reasonable. These low latencies can only be achieved
through the second SSII approach, direct speech synthesis, in
which audible speech is directly generated from silent speech
data by mapping the input silent data into a suitable speech rep-
resentation (e.g. MFCCs) and then generating a waveform from
the estimated speech parameters. Most commonly, deep neu-
ral networks (DNNs) [30] trained on time-aligned speech and
silent data recordings (i.e. parallel data) are used to model the
silent speech-to-speech mapping.

The research team of ReSSInt, as well as our international
collaborators, have made significant contributions on the direct
speech synthesis approach. Thus, in [16], we proposed a SSI
system based on direct speech synthesis and electromagnetic
articulography. The vocabulary consisted on digit sequences
and consonant-vowel pairs. Our results showed that intelligi-
ble speech could be generated from articulatory data, although
some phones were more mistakable than others (i.e. phones
differing in their manner of articulation or voicing were hard
to distinguish from the silent speech data). Building upon this
work, in [17], we addressed the task of synthesizing continuous
speech for a large vocabulary using recurrent neural networks.
On average, the resulting speech was ∼75% intelligible, but for
some subjects speech intelligibility reached up to ∼92%.

Although direct speech synthesis from EMG signals has
experienced considerable advances in recent years, this tech-
nology still presents many challenges which keep it from be-
coming a product. The first limitation is the strong dependency
of the results on the training session. Although array EMG
sensors have provided greater signal stability and robustness
in this sense (thus the relative position of the sensors is kept
constant), there are still differences in data between different
sessions [31, 32]. In [33] the authors show that even the train-
ing material (style, isolated words, syllables) can influence the
quality of the results. More importantly, all the mentioned ex-
periments are carried out on a speaker dependent fashion and
speaker independence remains unsolved. Finally, for a real ap-
plication of this kind of systems, real time performance must be
achieved. Although there have been some recent attempts [34],
this is still an open research issue.

In parallel with these findings, direct synthesis from neu-
ral signals is gaining growing attention due to the promises
of restoring speech function in individuals unable to speak.
In comparison with other sensing techniques, recording silent
speech data directly from the brain has the advantage that
speech is captured in an earlier form, which means that au-
dio could be synthesized from the neural signals with lower
latency. To date, however, only a few studies have addressed
the task of generating speech directly from neural activity. The
first study to report on this was [35] in which neural activity
recorded from a completely-paralyzed individual was used to
decode formant frequencies during imagined speech. As the
user became engaged in more training sessions, he quickly im-
proved with practice, learning to control the system to produce
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better acoustics. Martin et al. [36] investigated the prediction of
continuous speech from ECoG during imagined speech. In this
study, n = 7 subjects were asked to read aloud (overt speech)
and imagined reading (covert speech) short paragraphs of text.
Later, models were trained for the overt condition to predict
speech parameters from ECoG. These models were also applied
to predict the speech parameters during the covert condition.
Despite not being fully intelligible, human listeners were able
to identify the reconstructed speech when they have to choose
from a list of sentences. More recently, [22] proposed a two-
stage approach in which they first transformed ECoG signals
into anatomical representations of the vocal-tract articulators,
and then transformed such intermediate representations into
speech using bidirectional recurrent neural networks. Recon-
structed speech waveforms for n = 5 volunteers were deemed
quite intelligible by human listeners. Our collaborators from
the University of Bremen have also made important contribu-
tions in this field. For instance, in [23,37], they investigated the
synthesis of speech from ECoG signals. Two approaches were
used to map ECoG into speech: 3-dimensional convolutional
neural networks (CNNs) and a concatenative, unit-selection ap-
proach. In general, despite not being fully intelligible, it was
found that synthesized speech sounded natural and included
features such as prosody and accentuation. Moreover, it was
found that speech motor cortex provided more information for
the reconstruction process than the other cortical areas.

3. Objectives of the project
Despite the promising results and advances achieved so far, SSI
devices have not made it to the mass market. In our opin-
ion, a major reason for this is the lack of focus on real-life
use cases. In particular, the problem of inter-session and inter-
speaker variability is not yet solved and requires intensive fur-
ther investigation. Also, most works have not taken full advan-
tage of recent advances in generative DNNs. For example, most
systems have focused on predicting the spectral envelope while
nowadays neural vocoders can generate prosodic information as
well. Furthermore, most existing studies have been performed
with able-bodied subjects, often relying on parallel recorded
silent speech-and-acoustic signals. This excludes the important
group of speech-disabled persons who have already lost their
voice or have it severely impaired. Finally, many studies have
used offline data, which disregards the fact that a user will ex-
pect acoustic feedback during the process of speaking silently.
This feedback will allow the user to improve/adapt his/her own
speaking patterns (we speak of coadaptation of the user and the
device). Additionally, care needs to be taken to make the system
flexible and easy-to-use, which implies lightweight and portable
devices, fast enrollment, and graceful degradation in the case of
processing errors.

In ReSSInt, we intend to overcome the limitations of
both traditional voice rehabilitation methods and previous SSI
studies by investigating SSI-based communication systems for
restoring communication to individuals who have been deprived
of the ability to speak. From the whole spectrum of speech dis-
orders which may affect a person’s voice, ReSSInt will address
two conditions, each being the objective of a particular subpro-
ject:

• Subproject 1: total-laryngectomy patients. These per-
sons still retain the control over their speech articulators
and, hence, silent speech data reflecting the movements
of the articulators can be easily captured using EMG.

• Subproject 2: neurodegenerative diseases and other
traumatic injuries which may leave an individual para-
lyzed and, eventually, unable to speak. For many of these
individuals, the only means of communication is through
limited eye movements and blinking; however, for those
with complete paralysis, even this type of communica-
tion may not even be possible. An SSI-based commu-
nication system could provide a more effective and ef-
ficient way to communicate. Such a technology could
dramatically improve these people’s lives and, arguably,
its potential benefits would outweigh the risks of brain
surgery for implanting iEEG electrodes.

For an SSI system to be truly beneficial for these persons, it
must satisfy the following criteria, which have guided us in the
definition of the main goals of the project:

• It must be able to generate intelligible speech with a rea-
sonable quality and naturalness.

• The SSI system needs to be robust to intra- and inter-
speaker differences.

• The system must be flexible enough to deal with a variety
of rehabilitation scenarios, in particular:

1. Patients who are able to record synchronous silent
speech and acoustic data before losing their voice,

2. Recordings of a patient’s original voice may be
available, but silent speech biosignals is only
recorded after s/he has completely lost her/his
voice,

3. No recordings of the original voice are available,
so a substitute voice (e.g. a voice donor, perhaps
a close relative) needs to be used instead. The
third scenario is particularly relevant to SP2 given
the difficulty of recording speech for paralyzed pa-
tients.

• Finally, a practical SSI must be able to generate audio
from silent speech data in close to real-time (latency
<100 ms), so its user can receive synchronous acoustic
feedback while speaking and can adapt her/his articula-
tion style to improve the output.

We will accomplish these goals by taking advantage of the back-
ground work on speech synthesis and SSIs of both groups and
by recording large datasets, which in turn will foster the use
of cutting edge deep learning techniques to improve the perfor-
mance beyond the state-of-the-art. The real-time system will
play a central role during the evaluation phase to assess the per-
formance of the SSI in terms of speech intelligibility, quality,
and naturalness. This system will also pave the way for stud-
ies of user-in-the-loop strategies, where both the user and the
system co-adapt themselves to optimize the output.

Summarizing, the specific objectives of the coordinated
project are:

1. To explore the paths and advances in the application of
state-of-the-art deep generative neural network architec-
tures to improve the present quality and intelligibility of
current SSIs using EMG and ECoG.

2. To develop corpus, databases, protocols and best prac-
tices for research on SSI in Spanish language.

3. To establish a new research line and, consequently, a re-
search infrastructure for SSI in Spain.

4. To strengthen the links between two of the most consol-
idated research groups on speech technologies at the na-
tional level: Aholab at UPV/EHU and SiGMAT at UGR.
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Figure 1: Work package diagram for ReSSInt.

4. Methodology
ReSSInt is split into 5 work packages, representing functional
units which are necessary to tackle the goals of the project. The
major workflow between the work packages is shown in Fig-
ure 1.

WP0 and WP5 are transverse work packages dedicated to
the project management and dissemination/communication ac-
tivities, respectively. WP1 is dedicated to the experimental part
of the project (i.e. equipment setup, stimuli definition, partici-
pant recruitment and data acquisition). Data recorded in WP1
will be used by WP 2 and 3, where the foundational algorithms
for direct speech synthesis from silent speech data will be devel-
oped. In particular, WP2 deals with training DNN architectures
in a supervised fashion using parallel data. WP3, in contrast, is
dedicated to training with non-parallel data. WP4 is dedicated
to the evaluation of the algorithms and the user tests, which
will provide continuous input, assessment, and improvement re-
quests to the technical work packages. Our development model
is iterative, with frequent interactions between work packages
and partners. Most work packages run for the entire length of
the project; yet research is structured by the subordinate tasks
within the work packages.

5. Conclusions
In this paper we have presented the project ReSSInt, which will
be executed in the period from July 2020 till June 2023. The
project involves two research groups located in Spain (at the
University of the Basque Country UPV/EHU and the University
of Granada) in collaboration with expert researchers from other
countries.

The beginning of the project has been greatly affected by

COVID-19 and some of the task corresponding to the first year
are suffering a delay. The acquisition of ECoG data in SP2 has
not started yet, due to strict limitations on non-urgent surgery.
Also, the acquisition of the equipment needed in SP1 has been
delayed. However, the preparation of baseline systems is going
on using external data provided by our collaborators. Our ex-
pectation is that we will recover from the initial delay and the
main goals of the project remain viable.

Updated information about this project can be found
at http://aholab.ehu.eus/ressint.
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