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Abstract— Most current Brain-Computer Interfaces (BCIs)
achieve high information transfer rates using spelling
paradigms based on stimulus-evoked potentials. Despite the
success of this interfaces, this mode of communication can be
cumbersome and unnatural. Direct synthesis of speech from
neural activity represents a more natural mode of communi-
cation that would enable users to convey verbal messages in
real-time.

In this pilot study with one participant, we demonstrate
that electrocoticography (ECoG) intracranial activity from
temporal areas can be used to resynthesize speech in real-time.
This is accomplished by reconstructing the audio magnitude
spectrogram from neural activity and subsequently creating
the audio waveform from these reconstructed spectrograms.
We show that significant correlations between the original and
reconstructed spectrograms and temporal waveforms can be
achieved. While this pilot study uses audibly spoken speech for
the models, it represents a first step towards speech synthesis
from speech imagery.

I. INTRODUCTION

Brain-Computer Interface (BCI) research has made
tremendous advances in the last several decades. The most
prominent BCIs for communication rely on stimulus-evoked
potentials in conjunction with spelling paradigms to type a
single letter at a time [1], [2]. Because these systems operate
in a stimulus-locked fashion, users can only communicate
in predefined intervals. While speech can be synthesized
via text-to-speech methods, these systems cannot operate in
real-time. Direct synthesis of speech from neural activity
represents a more natural mode of communication that would
enable users to convey verbal messages in real-time. Addi-
tionally, such systems could convey other important aspects
of speech communication such as accentuation and prosody.

Neuroscientific investigations show detailed insights into
the production of speech [3], [4] and show that speech
production and perception are processed very differently in
motor areas [5]. Studies have shown that a complete set of
English phonemes can be classified from electrocorticogra-
phy (ECoG) [6], [7]. Others showed that speech recognition
technology can be used to reconstruct a textual representa-
tion of spoken phrases using ECoG [8], [9]. Despite their
innovative direction, these approaches suffer from the same
limitations as typing approaches, as additional information
of the spoken phrases is lost.

Pasely et al. were able to reconstruct perceived speech
from neural activity [10] and Martin et al [11] showed
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reconstruction of low dimensional spectral representations
from audible and imagined speech. We extend on these
ideas by reconstructing a complete spectrogram from neural
activity. We then use these reconstructed spectrograms to
synthesize a waveform of the speech signal. This approach
enables users to not only convey a message, but also add
extra information such as accentuation, prosody and accent.

In this pilot study, we recorded audible speech and ECoG
activity simultaneously from one participant and showed that
the speech spectrogram can be reconstructed with promising
correlations in an offline analysis. Furthermore, we show that
this scheme is fast enough for real-time, online synthesis of
speech from the neural signals.

II. MATERIALS AND METHODS

A. Data Acquisition

Data were collected from a 42 year-old female patient
with medically intractable epilepsy who underwent clinical
evaluation to localize the epileptogenic zone prior to surgical
resection. The patient consented to participate in the study as
approved by the IRB of both Mayo Clinic and Old Dominion
University. The patient had temporary placement of bilateral
temporal depth electrodes (8 contacts apiece, 5 mm spacing),
as well as three additional subdural strips placed on the
cortex of the left temporal lobe (6 contacts apiece, 1 cm
spacing). Electrode (Ad-Tech Medical Instrument Corpo-
ration, Wisconsin) placement and duration of intracranial
monitoring were solely based on clinical evaluation, with
no consideration given to this study. Electrode placements
were verified using a postoperative CT. Figure 1 illustrates
locations of subdural electrodes.

Fig. 1. Electrode positions for the pilot study participant.

The ECoG data were bandpass filtered between 0.5-500
Hz, digitized, and recorded using two 16-channel g.USB
amplifiers (Guger Technologies, Austria) at a 1200 Hz



sampling rate. Simultaneously, a Snowball iCE microphone
(Blue Microphones, California) sampled the voice data at
48 kHz. The data recordings were synchronized using the
general-purpose BCI system BCI2000 [12].

B. Experiment

For this study, a sentence was presented to the participant
visually and aurally for 4 seconds. Subsequently, the partici-
pant had 4 seconds to recite the phrase aloud from memory.
Sentences from the Harvard Sentence corpus [13] were used.
A total of 50 sentences were recited, which resulted in a total
of 200 seconds of data.

C. Feature Extraction

The recorded ECoG data were segmented into 50 ms
intervals with 25 ms overlap. This duration is short enough
to capture the cortical processes associated with speech
production and are long enough to extract broadband gamma
(70-170 Hz) activity, which is known to be highly task-
related [14], [15].

To extract broadband-gamma, linear trends were first re-
moved and data were subsequently downsampled to 600 Hz.
The first harmonic of 60 Hz line noise was attenuated using
an elliptic IIR notch filter. Elliptic IIR low-pass and high-pass
filters were used to isolate the gamma band. Signal energy
was then calculated on the filtered signal. A logarithm was
applied to the energy estimates to give the power features a
more Gaussian distribution.

Context information was included by concatenating 4
neighboring feature vectors up to 200 ms before and after
the current interval. This resulted in a total of 18 · 9 = 162
features in each feature vector xn for a time interval n.

The audio data was downsampled to 12 kHz to reduce the
total spectrogram size. The audio spectrogram is calculated
by taking the Short-Time Fourier Transform (STFT) in 50
ms intervals with 25 ms overlap, windowed using Hanning
windows. This results in 301 frequency bins per interval.
Only the magnitude of the STFT was utilized, as phase in-
formation can not be reconstructed from neural signals. The
spectral information of a time interval n is denoted as fn. As
ECoG data and audio data are recorded simultaneously, each
ECoG feature vector xn can be assigned a corresponding
audio spectrum fn.

With the phase information missing, the audio signal can
not be trivially reconstructed anymore and an approximation
method as described in Section II-E is needed.

D. Spectrogram Reconstruction

A linear mapping between ECoG features and log power
is estimated in a specific frequency bin. This mapping is
obtained using a Lasso regression [16]. The optimal regu-
larization weight α was determined using a nested 10-fold
cross-validation. This results in a weight-vector vi for each
spectral bin i and a scalar intercept bi. Once the models are
trained for all spectral bins, all weight-vectors and intercepts
can be combined to form a mapping matrix v and an intercept
vector b. Using this combined representation, a new frame

xn of ECoG activity can be transfered to the spectral power
representation fn of the audio by simply calculating

fn = v ∗ xn + b (1)

Using a simple linear model for ECoG to speech mapping
might not be optimal. Spectral reconstruction methods using
deep learning methods have achieved great results in the past
[17], but are usually orders of magnitude slower in training
and require more time for reconstruction of each spectrum
than the simple matrix multiplication needed in our approach.
Since this is a pilot study, a linear model was used knowing
that more complex methods should be investigated in the
future.

E. Speech Synthesis

Given the spectrogram reconstructed from the measured
ECoG activity f , one can reconstruct an audio waveform by
iteratively modifying the spectral coefficients of a signal ini-
tialized with noise. Griffin and Lim [18] proposed Algorithm
1 to reconstruct the waveform from the spectrogram. With

Algorithm 1: Waveform reconstruction
Data: Spectrogram f
Result: Waveform w
w ← noise;
for i← 1 to l do

X ← STFT(w);
Z ← f exp(i 6 X);
w ← ISTFT(Z);

STFT & ISTFT being the Short-Term Fourier Transform and
the Inverse Short-Term Fourier Transform, respectively. This
allows the reconstruction of a complete audio waveform
from the reconstructed spectrograms. Generally, only few
iterations l of this procedure are necessary to yield sufficient
audio quality. A value of l = 8 was chosen as no improve-
ments could be seen with more iterations and processing was
still very fast for 8 iterations. This algorithm can be used
either on the complete reconstructed spectrogram in offline-
analyses, or on each individual spectrum for online-synthesis.
In this study, waveform reconstruction was performed on the
entire reconstructed spectrogram.

III. RESULTS

A. Spectrogram and Waveform Reconstructions

Figure 2 illustrates an original and reconstructed (log)
spectrogram. Figure 3 shows an example of original and
reconstructed speech waveforms.

B. Computation Time

To assess the feasibility of our approach for online synthe-
sis of speech from neural signals, all involved components
were evaluated in terms of computational time and the
thus induced time lag. As hardware offsets induced by data
recording and audio output are not within the scope of this
analysis, they have not been included. All calculations are



Fig. 2. Original (top) and reconstructed (bottom) spectrograms.

Fig. 3. 5 seconds of original (top) and reconstructed (bottom) waveform.
Only very broad characteristics of the waveform can be seen in the
reconstructed waveform.

performed on an Intel Core i7 processor running at 3.6
GHz . The time needed for data filtering, feature calculation,
spectrogram reconstruction using the linear filter described
in Section II-D and the waveform reconstruction described
in Section II-E of one frame xn of ECoG features resulting
in 50 ms of audio were measured.

As can be seen in Table I, all operations can be performed
in under 1 ms resulting in a total offset far smaller than the
50 ms interval length. Speech synthesis from neural signals
can thus be performed in real time.

TABLE I
TIME NEEDED FOR COMPONENTS.

Operation Computation time
Data filtering <1 ms

Feature calculation <1 ms
Spectrogram reconstruction <1 ms

Waveform synthesis <1 ms

C. Reconstruction Quality

All evaluations were performed using a 10-fold cross-
validation: The Lasso regression models were trained on

90% of the data and were used to reconstruct spectrograms
for the remaining 10%. This procedure was repeated 10
times, so that all data were used for testing once. The Lasso
regularization parameter α was optimized using a nested 10-
fold cross-validation on the training data. The models need
approximately 1.5 seconds to be trained for each frequency
bin. This would result in a total training time of about 450
seconds for the complete model.

We calculated the Spearman correlation coefficient ρ be-
tween the original and reconstructed spectrogram for each
frequency bin to assess which parts of the spectral infor-
mation can be robustly reconstructed. Figure 4 illustrates
correlation coefficients over frequency bin. The mean overall
correlation over all frequency bins is ρ = 0.36. Correlations
below 200 Hz are around chance level as no speech informa-
tion is present in this frequency range. From 200 Hz onwards,
rank correlation coefficients increase until reaching a level of
approximately 0.4 at around 300 Hz. As the first formant
of vowel production usually starts around 300 Hz, high
correlation in these frequency ranges is especially important.
Rank correlations remain stable up to approximately 5 kHz,
after which only little speech information is left in the
spectrogram and correlation coefficients deteriorate rapidly
in our evaluations. Despite these very promising results,
it is evident from the short excerpt in Figure 2 that only
very broad aspects of the spectrogram are reconstructed and
improvements are still necessary to capture all delicate pro-
cesses in the speech spectrogram. The achieved correlation
coefficients are similar to those achieved by average subjects
in [11].

Fig. 4. Spearman correlation coefficients between original and recon-
structed spectrograms for different frequency ranges. Purple shaded region
denotes standard error of the mean over folds. Reconstruction remains
relatively stable between 500 and 5000 Hertz.

To evaluate the synthesized waveform, Spearman correla-
tions between the mean absolute Hilbert envelope in 50 ms
intervals of the original and reconstructed waveforms were
calculated. This yielded a Spearman correlation of ρ = 0.41,



which is significantly better than chance (Randomization
Tests, p < 0.001). As can be seen in Figure 3, the recon-
structed waveform broadly captures the envelope of speech
activity, but no detailed resemblance can be observed. Unsur-
prisingly, the reconstructed waveforms are not intelligible for
our pilot study participant. We hypothesize that this might be
due to the suboptimal electrode montage only covering areas
in the temporal lobe with low density and thus not providing
any information from motor areas which have been found to
contain a lot of relevant information about speech production
[5], [7], [8].

D. Interpretation of Regression Models

To visualize which neural activity is used to reconstruct the
spectrogram, the corresponding forward models to the Lasso
backward models v were estimated. This is done using the
method described by Haufe et al. [19]. Figure 5 visualizes
the mean forward model over all frequency bins for the pilot
participant. Highest model weights are on regions in the
auditory cortex. Activations are rendered using the NeuralAct
Software package [20].

Fig. 5. Average activation pattern of regression models for spectrogram
reconstruction.

IV. CONCLUSIONS

In a pilot study with one participant, we have shown
that intracranial ECoG recordings can be used to synthesize
speech. This is achieved by mapping the neural activity
directly to magnitude spectrograms which allow for a recon-
struction of a speech waveform. Our method yields recon-
struction similar to previously reported spectral reconstruc-
tions despite a suboptimal electrode montage. Even though
the reconstructed waveforms in this pilot study are not
intelligible, performance is expected to improve with better
coverage of more relevant brain areas. Most significantly, we
verified that our approach is capable of achieving real-time
online synthesis of speech from neural recordings, which is
key in the development of future speech neuroprosthetics.
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