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Abstract
Silent Computational Paralinguistics (SCP) – the assessment of
speaker states and traits from non-audibly spoken communica-
tion – has rarely been targeted in the rich body of either Com-
putational Paralinguistics or Silent Speech Processing. Here,
we provide first steps towards this challenging but potentially
highly rewarding endeavour: Paralinguistics can enrich spoken
language interfaces, while Silent Speech Processing enables
confidential and unobtrusive spoken communication for every-
body, including mute speakers. We approach SCP by using
speech-related biosignals stemming from facial muscle activities
captured by surface electromyography (EMG). To demonstrate
the feasibility of SCP, we select one speaker trait (speaker iden-
tity) and one speaker state (speaking mode). We introduce two
promising strategies for SCP: (1) deriving paralinguistic speaker
information directly from EMG of silently produced speech
versus (2) first converting EMG into an audible speech signal
followed by conventional computational paralinguistic methods.
We compare traditional feature extraction and decision mak-
ing approaches to more recent deep representation and transfer
learning by convolutional and recurrent neural networks, using
openly available EMG data. We find that paralinguistics can
be assessed not only from acoustic speech but also from silent
speech captured by EMG.
Index Terms: Silent Speech, Electromyography, Paralinguistics

1. Introduction
Computational Paralinguistics have been demonstrated to reveal
large amounts of information from the voice of a speaker [1]. The
usage of such information, including a speaker’s affective state,
health status, personality, as well as manifold further states and
traits bears huge potential, for example in spoken communication
or voice-based user interfaces.

A silent speech interface (SSI) [2] is a system enabling spo-
ken communication to take place even when an audible acoustic
signal is unavailable from the user. By capturing sensor data
from the speech production process involving the articulators,
articulatory muscle activities, neural pathways and the brain it-
self, the resulting biosignals provide a representation of speech
beyond acoustics that can be used for spoken communication
[3]. Such speech-related biosignals allow to circumvent the
limitations of conventional speech processing systems and are
the basis of computational paralinguistics for silent speech (We
define biosignals as autonomous signals produced by human
activities measured in physical quantities using different sensor
technologies [4]).

In particular, the human-computer interaction (HCI) commu-
nity has embraced biosignals to extend the number of modalities
available for developing robust and intuitive devices. Infor-
mation obtained from biosignals is used to interpret not only
physical states, but also affective and cognitive states, and activi-
ties of a user. Thereby, biosignals provide an inside perspective
on human mental processes, intentions, and needs that comple-
ment traditional means of observing human interaction from the
outside, and thus enable personalized and adaptive services [4].

Silent Computational Paralinguistics (SCP) reveal paralin-
guistics for situations when audible acoustic signals are not
available or advisable, e. g., due to privacy concerns or distur-
bance of others, adverse noise conditions, or speech pathologies.
While SSIs have previously addressed Automatic Speech Recog-
nition, e. g., from video, EMG, or ultrasound [5], or examined
how to synthesize silent to audible speech, e. g., for laryngec-
tomy patients [6, 7, 8], research on privacy for paralinguistic
analysis has focused mostly on whispered speech [9, 10, 11].
Some research has explored EMG for emotion recognition [12],
and facial expressions to enhance human-computer interaction
[13] or human-robot interaction [14]. However, the authors are
not aware of any published works aimed at advancing SSIs via
computational paralinguistics, or at extending computational
paralinguistics to silent speech.

This paper takes the first steps towards SCP. We use EMG
as our modality, exploiting physiological cues to estimate par-
alinguistic information. We introduce two methods: direct EMG-
based paralinguistics which estimates speakers’ traits and states
directly from EMG, and subsequent indirect EMG-to-Speech par-
alinguistics which first synthesizes an audible speech signal from
EMG and then applies standard acoustic paralinguistic methods.
We chose one speaker trait (speaker identity) and one speaker
state (speaking mode), and applied both traditional machine
learning and deep learning approaches based on unsupervised
and transfer learning to perform our experiments.

The rest of the paper is organized as follows: Section 2
gives a brief overview of the EMG-UKA data corpus used in
this paper and related terminology. Section 3 introduces EMG-
to-Speech conversion as the foundation for later experiments on
EMG-to-Speech output. Section 4 presents several methods for
performing speaker identification directly on EMG data. Section
5 presents our results of performing speaker identification with
deep autoencoders. Section 6 then presents our results of per-
forming speaking mode recognition, and section 7 finally gives
a summary of the work performed and potential future work.



Figure 1: EMG-UKA electrodes with bipolar derivation (white)
and derivation against a neutral reference (black numbers).

2. Data overview
We use the EMG-UKA parallel EMG-Speech corpus [15, 16].
This corpus contains acoustic and EMG speech signals recorded
in parallel, including a marker channel to compensate for dif-
ferent delays in the signal recording paths. The audio data was
recorded at a sampling rate of 16 kHz, with a standard close-
talking microphone, whereas the EMG signals were recorded
using a Becker Meditec Varioport device with 6 EMG channels,
operating at 600 Hz. An overview of the electrode positioning
can be seen in Figure 1. The corpus includes a total of 63 ses-
sions recorded from 8 speakers, featuring 3 different speaking
modes (audible aka modal speech, silent aka mouthed speech,
whispered speech) as part of 32 multi-mode sessions. While a
modal speech signal is not available for all utterances, the EMG
signal is always recorded – we call the EMG data for differ-
ent modes ”audible EMG”, ”whisper EMG” and ”silent EMG”,
respectively.

A subset of the sessions is freely available as a trial corpus
[15], the full corpus is available from ELRA [16]. A breakdown
of these sessions by speaker can be found in Table 1, while
Table 2 provides information about the size of the different mode
subsets. To analyze the performance of acoustic paralinguistic
analysis methods based on the EMG-to-Speech system output,
the EMG data of all utterances was converted to audible speech
as described below.

3. EMG-to-Speech conversion
To convert EMG signals to acoustic (audible) speech, we use
a deep neural network system, as described in our previous
work [17]. The bottleneck-shape 3-hidden-layer neural network
systems (first layer width of 1024 neurons) were trained in a
session-dependent manner, using TD-15 features as input. The
networks were trained to output mel-frequency cepstral coeffi-
cients (MFCCs) and fundamental frequency values for use with

Table 1: EMG-UKA Corpus: Speaker Breakdown. (*) indicates
session is part of the trial corpus, numbers in brackets indicate
number of sessions / utterances that are part of the trial corpus.

#sessions

Speaker Total Large Multi-Mode #utterances

1 3 0 3 450 (0)
2 (*) 33 (3) 1 (1) 15 (2) 3720 (820)
3 (*) 1 (1) 0 1 (1) 150 (0)
4 2 0 2 300 (150)
5 1 0 1 150 (0)
6 (*) 1 (1) 0 1 (1) 150 (150)
7 2 0 2 300 (0)
8 (*) 20 (8) 1 7 (2) 2159 (600)

Total 63 (13) 2 (1) 32 (6) 7379 (1720)

Table 2: EMG-UKA Corpus: Subset Breakdown

Duration ([h:]mm:ss)

Subset #Spk #Sess Average Total

Audible (Small) 8 61 03:08 3:11:34
Whispered (Small) 8 32 03:22 1:47:42
Silent (Small) 8 32 03:19 1:46:20
Audible (Large) 2 2 27:02 54:04

Whole Corpus 8 63 7:32:00

a mel-log spectrum approximation vocoder [18], which can then
be used to produce an acoustic speech waveform. For silent test
data, conversion was performed using a model trained on the
audible data of the same session.

On the audible data (EMG signals from audible speech), we
obtained a mean mel-cepstral distortion (MCD) score of 6.48
(SD 0.79; MIN 4.5; MAX 9.06). On the silent data (EMG signals
from silent speech), using audible data to which the output was
aligned using dynamic time warping (DTW) as the reference,
the mean DTW-MCD score was 6.38 (SD 0.57; MIN 4.86; MAX
8.86). We further calculate the concordance correlation coeffi-
cient (CCC) for each of the MFCCs, as estimated from the EMG
data versus from the reference audio (Figure 2), suggesting that
lower coefficients (i. e., large spectral changes) were predicted
relatively well, whereas the prediction quality for the higher co-
efficients was degraded. As demonstrated by our complementary
work on retrieving articulatory muscle activity from EMG [19],
the CCC for this inverse SCP problem is around 0.62. I. e., re-
sults for Speech-to-EMG CCCs have been comparable to the
prediction of the first two MFCCs in figure 2.

4. Direct EMG-based speaker recognition
The speech EMG signal is known to be session-dependent,
i. e. recording sessions may produce markedly different patterns
of EMG data, even when the same utterance is spoken. These
signal differences cannot be explained by simple hyper- or hy-
poarticulation but instead are more complex. Between-session
differences in EMG signals are caused not only by shifts in elec-
trode positions and impedances, but also by differences in tissue,
padding, facial hair, skin and muscle conditions, makeup (”daily
form”) as well as speaker idiosyncrasies in speech production.
Therefore, it should be possible to perform speaker recogni-



Figure 2: CCC between MFCCs estimated from EMG data and
MFCCs calculated from reference audio, for the audible subset
(above) and the silent subset (aligned via DTW, below).

tion from EMG signals. From the three problems of speaker
recognition, i. e., speaker identification (SID), verification, and
diarization, we chose the first one for the present experiments.

4.1. Experimental setup

To evaluate the SID rate from the speech-related EMG signal,
we picked those speakers from the EMG-UKA corpus for whom
more than one session is available (speakers 1, 2, 4, 7 and 8;
60 sessions in total). We trained each system on all but one
session and evaluated on the hold-out session to ensure that
results are based on speaker characteristics rather than session-
specific aspects. From the EMG signal we derived a set of
time-domain (mean absolute value, root mean square, sum abso-
lute values, variance, simple square integral, waveform length,
average amplitude change, zero crossing rate, slope sign change)
and frequency-domain (median frequency, weighted mean fre-
quency) features. Using these features, we trained and eval-
uated a Linear Discriminant Analysis (LDA) and a Random
Forest classifier with 290 trees and a maximum depth of 120 for
utterance-wise speaker identification.

4.2. Results and discussion

Table 3 shows the accuracy of the LDA classifier, suggesting
that results were impacted by the imbalanced data – with higher
performance for the speakers with a larger amount of training
data (e. g., accuracy for speaker 8 is nearly perfect). However,
the LDA and Random Forest classifiers achieved 83 % and 84 %
accuracy, respectively, and were well above chance level (chance
level for the accuracy being the prevalence of the most common
class, 55 %). The worst performing speaker is speaker 7, for
which, likely due to imbalance, not a single utterance is assigned.

To compensate for the imbalanced data, we calculated the
unweighted average recall (UAR). The LDA classifier obtained
a UAR of 73%, and clearly outperformed the Random Forest,
which favored the frequently seen speakers and achieved a UAR
of 64 %. Chance level for UAR would be 12.5 %. Still, it
can be seen that for both classifiers speakers who were under-
represented in training had a higher chance for mis-classification.

A potential caveat is possible sequence effects between ses-
sions due to electrode condition and speaker form if the same
speaker is recorded for multiple sessions back to back. Because
the UKA corpus does not have information on recording dates
and times available, we cannot investigate this with just the UKA
data – further recordings may be necessary to fully exclude it.

4.3. Speaker recognition using acoustic speaker embed-
dings and transfer learning

Next, we evaluate whether the speaker identification can be
improved by using speaker embeddings obtained from acous-
tic data. We first use the softmax variant of the Generalized
End-to-End (GE2E) loss [20] to train a long short-term memory
(LSTM) recurrent neural network (RNN) that maps sequences
of 25 MFCCs and the fundamental frequency to a single 64-
dimensional speaker embedding. Its architecture consists of
three stacked, unidirectional LSTM layers with a hidden size
of 192. The final state of the last LSTM layer is downsized
by a linear layer to the embedding dimensionality and is lastly
L2-normalized. For training, we use slices of 32 consecutive
acoustic features of non-silent utterances of all sessions. Subse-
quently, we trained an EMG speaker encoder with the same ar-
chitecture to produce equivalent embedding vectors given slices
of EMG TD-0 features. To train the EMG encoder, we minimize
the L2 loss between speaker embeddings of parallel acoustic
and EMG features of all but the hold-out session. For predicting
the speaker ID of EMG data of a hold-out session, we use an
LDA model fit on utterance-level embeddings of the training
sessions. Compared to the LDA approach, this approach results
in slightly lower performance: The UAR is 45.23 % (Accuracy
72.03 %). A detailed breakdown of per-speaker accuracy can be
found in Table 3. While, unlike for the LDA and Random Forest
models, some utterances were assigned to speaker 7, the lower
UAR seems to indicate a strong bias towards the prior.

5. Direct and indirect deep EMG-based
speaker recognition with autoencoders

In addition to our speaker identification approach introduced
in Section 3, we apply recurrent autoencoders to obtain a new
set of features. The evaluation mode is the same as the setup
described in Section 4.1.

We obtain our deep features through unsupervised represen-
tation learning with recurrent sequence to sequence autoencoders,
using the AUDEEP toolkit1 [21, 22]. Such representation learn-
ing avoids manual feature engineering. Furthermore, learned
feature sets have repeatedly been shown to be superior to hand-
crafted feature sets for a variety of tasks [23, 21].

5.1. Results on EMG

In the AUDEEP approach, 128-band Mel-scale spectrograms
were first extracted from the channel mean of the raw EMG mea-
surements. Here, we use 40 ms FFT windows with a hop size
of 20 ms. To eliminate some noise from the input signal, power
levels are clipped below four different given thresholds (-30, -45,
-60 and -75dB), resulting in four separate sets of spectrograms per
data set. A distinct recurrent sequence to sequence autoencoder
(2 hidden layers, 256 gated recurrent units/layer, unidirectional
en- and bidirectional decoder) was trained on each of these sets
of spectrograms in an unsupervised way for 64 epochs in batches
of 256 samples with a learning rate of 0.001 and a dropout rate
of 20 %. The learnt representations were extracted as feature vec-
tors for the corresponding instance, and concatenated to obtain
the final feature vector. A linear support vector machine (SVM)
algorithm with the complexity value C = 0.001 was employed
for the classification of the AUDEEP features. Using the intro-
duced hyperparameters and configurations, we achieve 51.7 %
UAR (86.6 % accuracy), 55.2 % UAR (82.1 % accuracy), and

1https://github.com/auDeep/auDeep

https://github.com/auDeep/auDeep


Table 3: Session-wise MIN, MAX, and mean (+/- SD) of the per utterance SID accuracy from EMG using three different methods.

LDA Random Forest Embedding Transfer

Spk# Worst Best Mean Worst Best Mean Worst Best Mean

1 0.97 0.99 0.98±0.01 0.58 0.99 0.85±0.19 0.25 0.33 0.29±0.03
2 0.34 1.0 0.95±0.13 0.96 1.0 0.99±0.01 0.1 0.98 0.81±0.2
4 0.0 1.0 0.5±0.5 0.01 0.68 0.35±0.33 0.29 0.49 0.39±0.1
7 0.0 0.0 0.0±0.0 0.0 0.0 0.0±0.0 0.01 0.04 0.02±0.01
8 0.99 1.0 1.0±0.0 0.83 1.0 0.99±0.04 0.43 0.9 0.75±0.14

All 0.0 1.0 0.92±0.24 0.0 1.0 0.93±0.22 0.01 0.98 0.72±0.25

55.4 % UAR (82.0 % accuracy) for audible EMG, whisper EMG,
and silent EMG, respectively. Compared to the results provided
in Section 3, we observe that AUDEEP results are below the LDA
models. We assume, the reason for this difference is twofold:
First, our recurrent autoencoders cannot generalise well on the
small dataset, and second: The recurrent models are still more
affected by class imbalance than the less complex LDA model.

5.2. Results on EMG-to-Speech audio
In addition to performing AUDEEP evaluation on the EMG sig-
nal directly, we also evaluate a system trained to work on the
output on an EMG-to-Speech system. In terms of UAR, the
model operating on EMG converted to audible speech obtains
an UAR of 56.32% and an accuracy of 80.63%. Overall, speaker
identification based on speech obtained from EMG-to-Speech
systems seems feasible.

6. Direct EMG-based recognition of
speaking mode

In addition to differences between sessions and speakers, the
speech EMG signal also changes depending on speaking mode –
i. e., the signal changes depending on whether a speaker is pro-
ducing modal (audible) speech, whispered speech, or is speaking
silently (i. e., performing articulatory gestures without producing
sound), with the differences going beyond simple hyper- or hy-
poarticulation. Classifying in which mode an utterance is spoken
would be useful for assisting silent speech interface research.
E. g., such classifications could be used to dynamically select
models for different modes, and the EMG-based parameters of a
model of a speaking mode may help to characterize important
signal differences. Furthermore, mode recognition provides a
powerful and complementary validation test for SCP because
most of the between-subjects variance (e. g., differences in skin,
facial hair) is held constant.

6.1. Experimental setup
To evaluate EMG-based mode classification, we use the multi-
mode sessions from the EMG-UKA corpus, a total of 32 sessions.
Each of these sessions contains 50 utterances spoken in each
mode, split into a development and an evaluation set. We trained
an LDA classifier on all sessions’ training sets and evaluated it
on each sessions’ test set. As features, we used the mean, SD,
and the 0th, 25th, 75th and 100th percentile values of the TD
features that were also used as the input for EMG-to-Speech
conversion [18].

6.2. Results and discussion

As shown by Figure 3, the mode classifier performs well for
silent audio but less well for audible and whispered speech,

which the classifier often confused. This matches our expectation
that audible and whispered speech should be broadly similar
in production, whereas the speech EMG signal for fully silent
speech (where no audible feedback is available to the speaker
whatsoever) is very different.

Figure 3: Confusion matrix of performing mode classification
on EMG data using an LDA model.

7. Conclusion
In this first step towards Silent Computational Paralinguistics
(SCP), we introduced two methods, direct EMG-based paralin-
guistics and subsequent EMG-to-Speech paralinguistics to es-
timate speaker ID and speaking mode on the basis of EMG
biosignals. The experimental results suggest that SCP are fea-
sible, and that both methods achieve results well above chance
level. Our results for SCP mode recognition further suggest that
EMG data may be sufficient to allow detection of, at least, broad
differences in speech production. However, so far, direct SCP
appears to outperform the indirect approach of first synthesizing
speech from EMG. Thus, as current results suffer from small
and imbalanced training sets, we hope to collect and share more
data in the near future.

From our point of view, Silent Computational Paralinguistics
offers an exciting new direction in which a lot of research can
still be done to further our understanding of speech beyond
acoustics.
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[14] A. Jones, D. Küster, C. A. Basedow, P. Alves-Oliveira, S. Serholt,
H. Hastie, L. J. Corrigan, W. Barendregt, A. Kappas, A. Paiva et al.,
“Empathic robotic tutors for personalised learning: A multidisci-
plinary approach,” in International conference on social robotics.
Springer, 2015, pp. 285–295.

[15] M. Wand, M. Janke, and T. Schultz, “The emg-uka corpus for
electromyographic speech processing,” in The 15th Annual Con-
ference of the International Speech Communication Association,
Singapore, 2014, interspeech 2014. [Online]. Available: http:
//www.csl.uni-bremen.de/CorpusData/download.php?crps=EMG

[16] ELRA Catalogue ID ELRA-S0390, “Parallel EMG-Acoustic
English GlobalPhone, ISLRN 910-309-096-5,” 2014. [Online].
Available: http://www.islrn.org/resources/910-309-096-523-6/

[17] L. Diener, M. Janke, and T. Schultz, “Direct conversion from facial
myoelectric signals to speech using deep neural networks,” in
International Joint Conference on Neural Networks, 2015, pp. 1–7,
iJCNN 2015.

[18] M. Janke and L. Diener, “Emg-to-speech: Direct generation of
speech from facial electromyographic signals,” IEEE/ACM Trans-
actions on Audio, Speech and Language Processing, vol. 25, no. 12,
pp. 2375–2385, nov 2017.
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