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Abstract

This paper presents initial results of performing EMG-to-
Speech conversion within our new EMG-to-Speech corpus.
This new corpus consists of parallel facial array SEMG and
read audible speech signals recorded from multiple speak-
ers. It contains different styles of utterances — continuous
sentences, isolated words, and isolated consonant-vowel
combinations — which allows us to evaluate the perfor-
mance of EMG-to-Speech conversion when trying to con-
vert these different styles of utterance as well as the effect
of training systems on one style to convert another. We find
that our system deals with isolated-word/consonant-vowel
utterances better than with continuous speech. We also find
that it is possible to use a model trained on one style to
convert utterances from another — however, performance
suffers compared to training within that style, especially
when going from isolated to continuous speech.

1 Introduction

Speech is the most natural form of human communica-
tion. Its use when communicating person-to-person is intu-
itive and speech-based human computer interfaces have be-
come commonplace, being integrated into cellphones, smart
speaker devices and general purpose computers. Thanks to
advances in machine learning and processing power, such
interfaces have not only been getting more common, but
have also been getting ever closer to the ideal of just asking
the computer a question as you would a fellow human.

Still, the ubiquity of these speech interfaces has also
highlighted some problems with such interfaces. As they
are intended for use with audible speech, they cannot be
used (or can only be used with much reduced performance)
in loud environments, such as on a factory floor or in a
busy airport. Conversely, in environments where silence is
expected (such as a library or in public transportation), their
use is also hampered. They are unsuitable for exchanging
confidential information like PIN codes or passwords, as
there is the danger of a bystander overhearing that infor-
mation. Finally, individuals who cannot produce audible
speech (e.g. laryngectomees) cannot use such interfaces.

Silent Speech Interfaces (SSIs) — speech interfaces that
do not rely on the presence of an audible acoustic speech
signal — promise to address these issues. These interfaces
instead use one or more alternative biosignals emitted by
the body during speech production to infer information
about the speech production process and, ultimately, about
speech [1, 2].

Many different signal modalities have been proposed
for use in SSIs. One approach is starting at the source,
recording speech production and perception related brain
activity via invasive electrocorticography [3, 4]. Another is
to utilize bone-conduction and stethoscopic microphones to
record non-audible murmur [5]. Then, there is the middle
path of gathering information from those parts of the body
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Figure 1: EMG-to-Speech conversion system overview.

that are directly involved with articulation. One approach in
this space is to use ultrasound and video to capture the shape
of the tongue [6] or capturing the shape of the lips [7] using
video. The configuration of various articulators can also
be captured using such techniques as permanent-magnetic
articulography — tracking magnets attached to those artic-
ulators in 3D space [8].

The approach presented in this paper instead tracks
the activity of the muscles that position the articulators,
using surface electromyography (sSEMG), using array elec-
trodes [9, 10]. We then convert these SEMG signals directly
to audible speech. The approach we have chosen has multi-
ple advantages:

e Surface EMG sensing is fully noninvasive — there is
no need to insert any markers or sensors into the body,
attaching them to the surface of the skin is sufficient.

e Array electrodes allow for — compared to using several
pairs of bi-polar electrodes — simple and fast electrode
attachment.

e The direct synthesis approach, unlike any approaches
to silent speech interfaces based on speech recognition,
allows us to transport para-linguistic information such
as intonation, stress or speaking rhythm.

In this paper, we present a new corpus for evaluating
SEMG based silent speech interfaces. This new corpus con-
tains not only, as in our previous work, continuous speech,
but also different types of isolated speech. Recording these
different styles of utterances allows us to perform new eval-
uations that were not possible using continuous speech only.

The rest of this paper is organized as follows: Section 2
gives a brief overview of our EMG-to-Speech conversion
system. Section 3 presents our new corpus on which the
evaluations shown in this paper have been obtained. Section



4 presents these evaluations, and they are finally discussed
in section 5. Section 6 summarizes the results and presents
some potential avenues for future work.

2 EMG-to-Speech Conversion

Our system performs EMG-to-Speech conversion using a
statistical mapping from a set of EMG features to audio
features. A high-level overview of our system can be found
in Fig. 1.

2.1 EMG Preprocessing

For sEMG, we calculate a set of 5 time-domain (TD) fea-
tures [11] for each EMG channel. For this, we first split
the signal into a low-frequency and a high-frequency part
at a cut-off frequency of ~134 Hz. We then extract 32 ms
Blackman-windowed frames from both parts with a frame
shift of 10 ms (i.e. an overlap between frame of 22 ms).
Based on these, we then calculate the low-frequency frame
power and mean and the high-frequency frame power, recti-
fied mean and zero-crossing rate. To add time context, we
then stack each frame with 15 frames of past context and 15
frames of future context, resulting in the final TD15 feature
vector, with 5 x 31 = 155 dimensions per channel.

To avoid large amounts of interference from broken
channels, we visually inspect each sessions EMG signal
and omit channels that are consistently broken from further
processing. We also removed one utterance from a session
where all channels of the EMG signal were faulty, possibly
due to outside electromagnetic interference.

2.2 Audio Preprocessing

To represent audio, we use a variant of the Mel-Frequency
Cepstral Coefficients (MFCCs) that are commonly used as
audio features in speech recognition and the fundamental
frequency (Fp) of the audio. First, the audio is split into
frames in parallel with the EMG data (i.e. again with a
frame shift of 10 ms and a frame length of 32 ms). We then
extract MFCCs as the parameters for a Mel-Log Spectrum
Approximation [12] filter, and the F{y values using the YIN
method [13]. Together, the excitation generated from the
Fy trajectory processed by the MLSA filter allow for the
recreation of the audio waveform from the feature frames.

2.3 Feature Transformation

The evaluations presented in this paper were obtained us-
ing a Deep Neural Network (DNN) based transformation
of EMG to Audio. We use a feed-forward network that
contains 5 layers total (three hidden layers) with ReLU
units. The overall architecture of the network follows a
feature-extraction-then-conversion approach, resulting in
an hourglass shape. The network is trained on parallel EMG
and Audio feature vectors using stochastic gradient descent.
These hyper-parameters were determined on a development
set in our previous work [9].

Note that, as in our previous work, our statistical models
require parallel EMG and audible speech data to train and
are therefore trained on EMG data recorded during audible,
not silent, speech.

3 Corpus Description
3.1 Session Contents

The new corpus consist of 4 parts: Continuous speech,
consonant-vowel and vowel-consonant sequences, isolated
words and digits.

For continuous speech, we used phonetically balanced
sentences established in [9]. The sentences are from the
broadcast news domain. The corpus contains 390 of these
sentences; 300 for training, 50 for developing, and 40 for
testing purposes. The entire test and development sets from
our previous work are included, allowing for result compa-
rability.

To get a high coverage of consonant-vowel and vowel-
consonant sequences (CVs and VCs, respectively) with
regards to our continuous speech block, we statistically
examine the continuous speech training set utterances. We
calculate a frequency distribution of CV and VC sequences
and choose the most common sequences (within the 90th
percentile, rounding up to the nearest 5). This results in 85
CVs and 75 VCs total.

To allow for a more consistent pronunciation of these se-
quences, we added a context around the combinations (e.g.
T_AK_E for AK or _FE_DERAL for FE) for prompting
during recording — note, however, that participants were
instructed to read only the CV or VC, not the surrounding
context. In a few exceptions the resulting words were in-
feasible for use in our corpus because of their structure, e.g.
words with a dental fricative ("th” sound) or diphthongs
like "EO” or "OU”, where the CV or VC goes across the
boundary of the sound, or where one of the letters in the
CV/VC was silent. Examples are T_HI_S, FO_UN_D or
PE_OP_LE. In these specific cases, we used the next com-
mon word without these drawbacks.

As a step between continuous sentences and isolated
CV/VCs, we use Isolated words. The words we include in
our corpus were selected from a set of words used for intel-
ligibility evaluations in telephony [14]. The original corpus
contains 300 words in total — 150 by variation of initial
(phonetic) elements and 150 by variation of final elements,
in groups of six words. For this corpus, we selected 180
words (30 groups of six), 90 words with initial variation and
90 words with final variation. An example of a group with
variations of initial elements is: LED - SHED - RED - BED
- FED - WED and a group with final variation: BAT - BAD
- BACK - BASS - BAN - BATH. This specific setup allows
for multiple-choice intelligibility testing, with similar or
dissimilar words.

Finally, the new corpus contains digits from O to 9,
which can act as a simple reference set that can be recorded
in a short amount of time.

3.2 Recording Setup

To record sessions suitable for training our EMG-to-Speech
conversion system, we use an OT Bioelletronica Quattro-
cento multi-channel EMG amplifier. We use two EMG
array electrodes: One 8 x 4 matrix on the cheek, and one
1 x 8 strip below the chin. The signal is acquired using
chained differential derivation along the longer axis of each
electrode (resulting in a total of 7 x 5 = 35 EMG channels),
processed with a DC offset removal filter at 10 Hz and
anti-aliasing filter at 900 Hz and then sampled at 2048 Hz.



Words Sentences
Speaker Gender Digits Initial Var. Final Var. CV VC  Train Dev Test Total
Spk1 f 00:20 02:42 02:39 02:15 01:58 25:00 04:06 03:44 42:44
Spk2 m 00:20 02:42 02:46 02:14 01:57 21:19 03:26  03:09 37:53
Spk3 f 00:26 03:32 03:32 03:02 02:44 23:04 03:45 03:23 43:28
Spk4 m 00:22 03:00 03:04 02:30 02:14 19:43 03:12 02:50 36:55
SpkS m 00:21 02:45 02:48 02:30  02:14 23:29 03:48 03:27 41:22
Spk6 m 00:19 02:40 02:43 02:42 02:12 20:16 03:15 03:00 37:07
Total (hh:mm:ss) 03:59:29

Table 1: Data corpus breakdown for recorded utterances (mm:ss)
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Figure 2: Results of EMG-to-Speech conversion on iso-
lated speech, obtained using 8-fold cross evaluation. Bars
indicate utterance standard deviation, lower is better.

3.3 Recorded Corpus

Using the setup and corpus described in this section, we
have recorded six sessions of parallel EMG and Audio data
to evaluate our system on. Our subjects (Four male, two
female) were between ~20 and ~30 years old and are all non-
native English speakers. All of the recorded subjects were
healthy and reported never having had any speech disorders.
Subjects were thoroughly informed about the recording
procedure and experimental evaluations to be done with
recorded data and informed consent of all subjects was
obtained before recording. In total, we recorded ~4 hours
of data. A detailed breakdown into the different parts of the
corpus for all recorded speakers can be found in Tab. 1.

4 Initial Evaluations

We present some initial results of performing EMG-to-
Speech conversion on our new corpus, including a com-
parison between isolated and continuous speech. To evalu-
ate our systems, we compare the Mel-Cepstral Distortion
(MCD) scores of the systems output [15]. The MCD score
is a distance measure in MFCC space; a lower MCD means
that the system output is more similar to the reference au-
dio. MCD scores obtained in EMG-to-Speech conversion
typically fall into the range between 4.5 and 7.0.

Since the EMG signal varies greatly between speakers
and depends strongly on skin condition, all evaluations
presented in this paper are session-dependent, i.e. no data
is shared between speakers.
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Figure 3: Results of EMG-to-Speech conversion on contin-
uous speech (on the sentences development set), with the
system being trained on different combinations of training
data. Bars indicate utterance standard deviation, lower is
better.

4.1 Cross-Evaluation on Isolated Speech

To evaluate the performance of our system when both train-
ing on and converting isolated words or CV/VCs, we per-
form 8-fold cross evaluation training on these subsets (split-
ting utterances into folds). The MCD scores of the resulting
audio can be found in Fig. 2.

4.2 Across-Style mapping

To evaluate the performance of our system when training
on one utterance style and evaluating on another, we use
two different test sets.

Fig. 3 shows MCD scores obtained on continuous speech
(the sentences development set) using systems trained on
different combinations of training data. We show scores
when training on the sentences training set, the isolated
CV/VCs, the isolated words, words + CV/VCs and finally,
the sentences training set + words + CV/VCs all together.

Fig 4 shows a similar evaluation for isolated speech
(the Words set). Here, we use systems trained on CV/VCs
and on CV/VCs + the sentences training set. The word
cross-evaluation results are provided as a reference.
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Figure 4: Results of EMG-to-Speech conversion on iso-
lated speech (on the Words set), with the system being
trained on different combinations of training data. Words 8-
fold cross-evaluation provided for reference. Bars indicate
utterance standard deviation, lower is better.

5 Discussion

For speech recognition, it is known that the task of rec-
ognizing isolated words is very different from the task of
large-vocabulary continuous speech recognition [11].

Comparing Fig. 2 to Fig. 3, we can see that this also
holds true for EMG-based speech synthesis. The MCD
scores for all categories of isolated speech are lower than the
results for continuous speech — even though the training
set available for continuous speech is much larger (Compare
Tab. 1).

That there is a qualitative difference between isolated
and continuous speech can also be seen in the results ob-
tained when using different utterance styles in training and
testing, as in Fig. 3. Using the isolated Words set in training
significantly improves performance compared to using just
CV/VCs, and combining both is better still — however,
none of the systems trained on isolated speech perform the
task as well as the system trained on continuous speech. In
fact, adding the isolated speech sets to the sentences train-
ing set does not significantly improve performance versus
using just the sentences training set alone.

That the difference between continuous and isolated
speech is not merely an effect of adding more training
data can be seen by examining the results presented Fig. 4:
Here, the isolated CV/VCs are used to train a system that is
then used to convert the isolated words. While the CV/VC
based system does perform significantly worse than a sys-
tem trained on the words themselves (again, in 8-fold cross
evaluation), the drop in performance is not as severe as the
drop between isolated and continuous speech.

Note that in some of our evaluations, the standard de-
viation appears very high. This is due to rare utterances
that have extreme MCD scores, caused by artifacts in that
utterances EMG signals. Due to low amounts of training
data, the influence of these artifacts on MFCC output can
be severe. For this reason, it will be important to develop
automated algorithms in place to detect and alleviate this
effect.

The results discussed in this section were tested for
statistical significance using a one-tailed dependent sample
t-test, at a significance level of p < 0.05.

6 Conclusion

In this paper, we have introduced a new corpus and initial
recordings that we have performed using this corpus. We
have presented results that have shown while it is possible to
perform EMG-to-speech conversion of continuous speech
when training only on isolated segments of speech, per-
formance suffers in this case. We have also shown results
that suggest that EMG-based speech processing of isolated
speech is, in general, an easier task than EMG-based pro-
cessing of continuous speech.

In the future, we hope to investigate different archi-
tectures that can be better trained using smaller data sets.
We also hope to investigate methods to automatically de-
tect and suppress or replace artifacts and faulty channels,
which will be especially important for further work towards
real-time EMG-to-Speech conversion [16]. Finally, we will
investigate intelligibility using forced-choice listening tests
and perform further comparisons between continuous and
isolated speech.
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