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Abstract— This paper presents early-stage results of our
investigations into the direct conversion of facial surface elec-
tromyographic (EMG) signals into audible speech in a real-
time setting, enabling novel avenues for research and system
improvement through real-time feedback. The system uses a
pipeline approach to enable online acquisition of EMG data,
extraction of EMG features, mapping of EMG features to audio
features, synthesis of audio waveforms from audio features and
output of the audio waveforms via speakers or headphones. Our
system allows for performing EMG-to-Speech conversion with
low latency and on a continuous stream of EMG data, enabling
near instantaneous audio output during audible as well as silent
speech production. In this paper, we present an analysis of our
systems components for latency incurred, as well as the trade-
offs between conversion quality, latency and training duration
required.

I. INTRODUCTION

Silent Speech Interfaces [1] (SSIs) are speech interfaces
that, instead of relying on an acoustic speech signal, use
information gathered from other signals generated during
various stages of the speech production process. A common
property of all SSIs is that they can be operated without
actually producing audible speech. This results in several
key advantages of an SSI over a regular speech interface:
It can be used even in very noisy areas – or, conversely, in
areas where the noise from audible speech is not desirable, as
well as in situations where private or confidential information
needs to be protected from bystanders.

Several approaches to building silent speech interfaces,
based on different signal modalities, have been explored
in the past, among them ultrasound [2], permanent-magnet
articulography [3] and electrocorticography [4]. Our approach
to building an SSI uses facial surface electromyography to
capture electrical signals generated by the articulatory muscles
and directly (without first performing speech recognition)
converts them to audible speech [5].

Fully silent operation, while desirable, is not without its
challenges, however: It has been shown that humans articulate
differently when merely mouthing words, compared to audible
speech production [6]. Most SSIs trying to convert silent to
audible speech use statistical models perform this conversion,
which require parallel audible and non-audible training data.
To properly convert fully silent speech signals, adaptation is
required – of the system to the user, the user to the system,
or both. Real-time silent-to-audible conversion is, therefore,
a necessity not only for general usability, but also to improve
systems, as an adaptation, especially of the user to the system,
can only take place when feedback is present.
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Fig. 1. Positioning of the electrodes, with one 4 × 8 electrode array on
the cheek and an 8 electrode strip below the chin.

Our previous work focused on improving the quality of
conversion of EMG signals to audible speech with no regards
to performance. This paper reports our first results in building
a real-time low latency capable EMG-to-speech conversion
system, which will enable us to perform research into the
effects of feedback and human-machine co-adaptation that
was not possible with an offline system.

Written informed consent was obtained from every person
whose data was used to obtain the results in this paper.

II. SYSTEM DESCRIPTION

There are large inter-session differences in EMG recordings,
caused by factors such as differences in electrode positioning
or skin condition. For this reason, we need to record data
and train a session-dependent mapping before the system can
be used. Our previous EMG-to-speech conversion systems
performed all processing steps offline, on pre-recorded data
corpora, including pre-processing and feature calculation,
training of the EMG-to-speech mapping and synthesis of
audio output. For a real-time system, the time taken to perform
these steps has to be reduced as much as possible, requiring
a completely different system design: EMG pre-processing,
mapping and synthesis have to be performed both in real-
time (i.e. with less time spent on each frame than the frames
duration) as well as with low latency (i.e. with a low delay
between user speech production and audio output). Audio
pre-processing and the training of the mapping, while not
necessarily required to be either real-time or low latency, still
need to be fast enough so that a user does not have to wait
for an unreasonable amount of time before the system can
be used. The following sections introduce our system and its
design in light of these requirements.

A. Hardware

To record EMG signals, our system uses an OT Bioelet-
tronica EMG-USB2 EMG amplifier. With it, we record EMG
signals from the user’s cheek using an electrode array (4 x
8 electrodes, 10 mm inter-electrode distance) and the user’s



chin using an electrode strip (8 electrodes, 5 mm inter-
electrode distance), chosen and positioned in accordance
with our previous work [7]. Fig. 1 illustrates the placement
of the electrodes in the face. The signals are acquired and
amplified with a gain of 5000 using bipolar derivation between
neighbouring electrodes (resulting in 35 EMG channels),
processed with a 1 Hz high-pass filter (HPF) and 900 Hz
low-pass filter (LPF), sampled at 2048 Hz and converted to
16 bit integer values.

An audio signal, required for the training of our EMG-to-
speech conversion system, is acquired in parallel with the
EMG signal, using a RØDE NT-1 condenser microphone and
a Behringer 302USB mixer. The audio signal is recorded at
16 kHz, at a bit depth of 16 bits.

B. System Architecture

To allow for the low latency extraction of features, we
designed our feature extraction process to be as pipelined as
possible: Every component of the process is implemented as
a module which is fed data by either a recording source (the
EMG amplifier or the sound card) or a preceding module,
and feeds data to the next module in the processing chain as
soon as it becomes available. This design also facilitates a
high-throughput (and thus, real-time) multiprocessing-enabled
implementation, as modules can trivially be run in different
processes, connected by first-in-first-out pipes. It also allows
us to perform computation not on the machine used for
recording (and, later, audio output), but on another network-
connected machine with better hardware.

C. Feature extraction

1) EMG features: As the input for our EMG-to-speech
mapping, we use a set of time-domain features, modeled after
the features introduced by Jou et al. [8]. The features used
in our mapping are the low-frequency (LF) power, LF mean,
high-frequency (HF) power, HF zero crossing rate (ZCR)
and HF mean of absolute values, where the LF signal is
obtained via a running mean LPF with a cut-off frequency
of 134 Hz and the HF signal is obtained as the difference
of the input signal and the LF signal. They are calculated
separately for each EMG channel, on frames of a length of
fl = 32 ms, with a frame shift of fs = 10 ms. To provide
time context, the feature vectors are then stacked 15 frames
into the past, yielding an overall 35 channels x 5 features x
15 frames context = 2625 dimensional feature vector. The
feature calculation process can thus be split into three parts:

• Framing: This module collects incoming data in a ring
buffer, and, once at least one complete frame worth
(fl) of data has arrived, passes on one complete frame
every fs. Framing is performed with a fractional frame
shift, to prevent EMG and audio framing from drifting
apart. As some of our features require the splitting of the
signal into a low- and high frequency part, this module
also allows running application of a causal FIR filter
on the incoming data stream, delaying the first frame
accordingly if the length of the filter is longer than the
frame size.

• Feature calculation: The feature calculation module
simply takes a stream of frames as its input and applies
a given function to it to calculate one feature value for
each channel, which it passes on to the stacking module.
To calculate multiple features, multiple of these modules,
with different feature calculation functions, are created.

• Stacking: The stacking module combines any amount
of incoming feature streams, waits until each stream has
delivered as many frames as are to be stacked, and then
passes on the stacked, combined feature frame, ready
for training or mapping.

2) Audio features: To represent the audio signal, our
system uses a magnitude spectrogram. The calculation is
performed much in the same way as for the EMG features: A
framing module splits the audio into overlapping frames, on
which a feature calculation module calculates the magnitude
spectrum using a short-term Fourier transform (STFT) with a
Blackman window, resulting in the stream of audio features.
For training, the EMG and audio frames are then combined
into one parallel feature stream.

D. Mapping

Following our previous work [9], we use a deep neural
network (DNN) using rectified-linear units to perform the
mapping of EMG to audio features. To lessen the impact
of over-fitting when only a very small amount of training
data is available, we added drop-out regularization between
all layers [10]. Fig. 2 illustrates the structure of the neural
network used in this paper.

Fig. 2. Structure of the DNN used for EMG-to-audio feature mapping.

The fast training of neural networks requires a large amount
of processing power, but parallelizes well. Our system uses
the Brainstorm [11] neural network library to perform mini-
batched stochastic gradient descent training on a GPU, with
a mini-batch size of 512, a training momentum of 0.9 and a
learning rate of 0.001 for the first three epochs and 0.01 for
27 epochs afterwards.

Fig. 3 shows an overview of the system setup as used
for training. Note that feature calculation can be performed
during recording, minimizing the time the feature calculation
step adds to system training.

E. Synthesis

As our audio features are magnitude spectrograms, the
problem of synthesizing a waveform is equivalent to esti-
mating a matching phase. To this end, we use the method
proposed by Griffin and Lim [12], implemented to operate
on a continuous stream of data. It reconstructs the input



Fig. 3. The different modules of our EMG-to-speech conversion system
during the data recording and system training stage. Inner borders indicate
modules running within one process.

signal by first computing the Blackman-windowed STFT of a
random signal, replacing its magnitude spectrogram with the
input spectrogram, estimating the signal that best matches this
new spectrogram by overlap-adding the spectrogram frames’
inverse STFTs, and then iteratively repeating these steps with
the estimated signal instead of a random signal as input. This
estimation is performed on overlapping blocks of data large
enough to fully determine every new spectrogram frames
estimated signal as soon as the input data is available (a
total block size of bfl/fsc ∗ 2 + 1 frames, centered on the
current frame). Fig. 4 illustrates the complete pipeline during
real-time conversion.

Fig. 4. The different modules of our system during real-time EMG-to-speech
conversion. Inner borders indicate modules running within one process.

III. SYSTEM ANALYSIS

This section presents an analysis of our system for
two factors: We analyze the latency incurred by different
components of our system, and present an evaluation of how
the amount of training data (and consequently, the amount
of time spent recording and training at the start of a session)
affect output quality.

A. Component latency

The conversion latency in our system can be divided into
four categories.

• Hardware latency: Latency inherent to the hardware
used in our system – EMG amplifier and sound card.

• Network latency: Latency induced by the the transfer
of data over the network, from the machine running the
recording and output to the computation machine and
back. In our wired network, the round-trip time of a
packed between recording and computation machines
(mean, measured once per second for one minute) is
lnet = 0.13 ms

• Buffer latency: Latency induced by the keeping of
temporary buffers in processing pipelines. This is al-
leviated by properly pre-filling the conversion pipeline
to generate output as soon as possible, leaving only the
length of the longest buffer as added latency – in our

system, this is during synthesis, with a buffer length of
lbuf = (bfl/fsc+ 1) ∗ fs = 40 ms.

• Computation latency: Latency due to the computation
time taken up by feature calculation, mapping and
synthesis. As every module depends on the previous
modules output, the total computation latency lcomp is the
sum of all modules computation times. This is analyzed
further below.

Table I shows the computation times required for different
parts of the real-time EMG-to-speech mapping to produce one
output frame (10 ms of audio), measured averaged over 1000
input frames. Total computation latency is lcomp = 9.34 ms,
making the total overall latency l = lnet + lbuf + lcomp =
0.13 ms+ 40 ms+ 9.34 ms = 49.47 ms. With the largest
computation delay stemming from necessary buffering, further
optimization might require redesigning the system to operate
on smaller and more closely spaced frames – requiring tighter
computation time constraints, as well.

TABLE I
PER-OUTPUT-FRAME COMPUTATION LATENCIES

Computation time

Module Absolute Relative to total

Framing 0.16 ms 1.71%
Framing with LPF 0.44 ms 4.71%
Subtraction 0.1 ms 1.07%
Power (LF) 0.67 ms 7.17%
ZCR (HF) 0.16 ms 1.71%
Mean (LF) 0.1 ms 1.07%
Power (HF) 0.58 ms 6.21%
Rectified Mean (HF) 0.14 ms 1.5%
Stacking 0.02 ms 0.21%
DNN Mapping 4.03 ms 43.15%
Synthesis 2.94 ms 31.48%

Total 9.34 ms

In trying to estimate the time between when speech output
is expected and when the system actually produces output,
we have to take electromechanical delay into account: There
is some time between the moment an electrical excitation of
the muscle tissue can be measured and movement onset [13].
While the exact delay may vary between different phones,
50 ms has been found to be a good average estimate [8]. This
leaves our system with an estimated time lag of close to zero
milliseconds between user-expected and actual sound output,
plus hardware delays. In practice, we have observed latencies
that appear to be in excess of this, hinting at an influence of
hardware latencies on the system – how these are distributed
and how they could be mitigated remains to be investigated.

B. Quality versus training time

Session-independence in EMG-based speech processing
remains an unsolved research problem [14]. Our conversion
system, therefore, operates session-dependently, necessitating
training with newly acquired data in each session before it can
be used. From a quality standpoint, it would be desirable to
have more training data rather than less, however, more data
requires more recording, processing and training time. Finding
a good balance between the amount of training data and the



Fig. 5. A comparison of reference and mapped audio of the utterance “Both
the union and management are talking tough.”, converted using a system
trained with 450 training utterances.

Fig. 6. Mean spectrogram band correlations between reference and mapped
audio (larger is better). Coloured areas indicate standard error of the mean.

quality of the system output is, then, an important trade-off.
For this reason, we evaluated our system’s performance on
unseen data depending on the amount of data used in training.

To perform this evaluation, we trained our system with a
varying number of training utterances, from 25 up to 450 in
steps of 25, from a pre-recorded corpus from our previous
work [9]. We then used the system to map the held out
set of test utterances, and compared the rank correlation of
the spectrum (Spearman’s rho) between reference audio and
mapping result, aligned to maximize that correlation.

Fig. 5 shows a set of aligned spectrograms. It can be seen
that the mapping manages to capture the overall structure of
the spectrum, though fine detail is lost, and a large noise floor
remains. This can also be seen in Fig. 6, which shows the
mean correlations of the spectrograms bands for three systems
– the mapping works particularly well for low frequencies,
with the maximum correlation of 0.62 in the 496 Hz to 527 Hz
band for the best performing system.

Fig. 7 shows mean correlations depending on the amount of
training data. As expected, increasing the amount of training
data improves output quality. With our current mapping setup,
however, improvement seems to slow down after 125 to
150 and seems to saturate at around 200 to 250 training
utterances, with very little improvement thereafter. This leads
us to believe that 150 training utterances (circa 9.5 min of
audio recording and, with our setup, circa 5.5 min of training
time), with a mean spectral correlation of 0.48, are sufficient
for initial feedback experiments.

IV. CONCLUSION

We have presented an initial system for real-time low
latency EMG-to-speech conversion and shown evaluations
of the system towards potential use in real-time feedback
experiments. In the future, we hope to further improve

Fig. 7. Average spectral correlation between reference and mapped audio
depending on training set size (larger is better). Coloured area indicates
standard error of the mean.

this system and to use it to investigate questions related
to machine-human co-adaptation in silent speech. We plan
to investigate the effect of real-time audio feedback with
varying quality and delay on silent- and audible mode speech,
especially if conversion quality improves after prolonged
system use. We plan to investigate hardware latency. We
hope to improve quality by starting the training procedure
from models pre-trained with large amounts of data, possibly
performing data adaptation on the session recordings.
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