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Zusammenfassung

Diese Masterarbeit stellt einen neuen Ansatz zur Verbesserung eines Unit-Selection-
Systems zur Umwandlung myoelektrischer Signale der Gesichtsmuskulatur in hörbare
Sprache vor.

Oberflächenelektromyographie ist das Aufnehmen der elektrischen Muskelaktivität
mit an der Hautoberfläche angebrachten Elektroden. Es ist bekannt, das es möglich
ist, aus solcher während der Sprachproduktion erzeugter Aktivität hörbare Sprache
zu erzeugen. Dies wurde in vorhergegangenen Arbeiten mit verschiedenen Ansätzen
erreicht.

Diese Arbeit konzentriert sich auf Unit Selection. Unit Selection erzeugt ein Sprachsig-
nal, indem es Audio-Stücke, ausgewählt nach einem Kriterium, das auf parallelen
EMG-Daten ausgewertet wird, konkateniert. In dieser Arbeit wird ein neuartiger
Ansatz vorgestellt und evaluiert, der die Datenbank, aus der Units ausgewählt werden
optimiert und so den Konvertierungsprozess qualitativ und quantitativ verbessert.

Insgesamt erreicht der neue Ansatz eine qualitative Verbesserung von bis zu 14.92
Prozent relativ gegenüber dem vorherigen System. Gleichzeitig wird die Zeit, die für
die Konvertierung benötigt wird, um bis zu 98% verringert.
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Abstract

This master’s thesis introduces a new approach to improve the unit-selection based
conversion of facial myoelectric signals to audible speech.

Surface electromyography is the recording of electric signals generated by muscle
activity using surface electrodes attached to the skin. Past work has shown that it
is feasible to generate audible speech signals from facial electromyographic activity
generated during speech production, using several different approaches.

This work focuses on the unit-selection approach to conversion, where the speech
signal is reconstructed by concatenating pieces of target audio data selected by a
similarity criterion calculated on the parallel sequence of source electromyographic
data. A novel approach, based on optimizing the database that units are selected
from by using unit clustering to generate more prototypical units and improve the
selection process, is introduced and evaluated.

In total, we obtain a qualitative improvement of up to 14.92 percent relative over a
baseline unit selection system, while improving the time taken for conversion by up
to 98%.
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1. Introduction

Speech is the oldest and most natural form of human communication. We begin to
acquire the ability to express ourselves in spoken language at an early age, naturally
and without requiring special instruction. We use it every day with little thought
given to the actual process, and communicate not only facts, but also paralinguistic
information such as our mood or emotions.

Silent Speech Interfaces (SSIs) aim to allow us to use our natural communication
skills even in situations where the actual production of audible speech is either not
desirable (e.g. in situations where other people would be disturbed, such as in a
library) or wholly impossible (e.g. in case of speech impediments that prevent proper
articulation), or in noisy environments where environmental sounds may drown out
anything spoken. They do this by using other modes of acquiring information about
the speech production process instead of relying solely on acoustic signals recorded
during normal audible speech.

There are several different modalities that can be used to construct SSIs, such as
non-audible murmur [TS05] or the recording of lip movements using magnets attached
to or implanted into a users lips [FEG+08]. This work focuses on speech synthesis
based on facial surface electromyography (EMG): Surface electrodes on the users
skin record muscle movement related electric potentials, which are then converted
directly to audible speech.

This approach has several advantages: Unlike more invasive methods, surface EMG
is easy and comparatively comfortable to use, and unlike SSIs based on speech
recognition, a synthesis approach ideally enables the retention of information not
directly contained in the textual content of what was spoken, such as prosody, speaker
identity, mood and emotion.

To maximize the benefits of these advantages, a method that produces high-quality
audio output is required. [ZJWS14] first introduced a conversion method based on
unit selection, where the audio output is created by overlaying and concatenating
small speech snippets. This allowed for output that sounds very natural - however,
intelligibility remains a problem.
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1.1 Goal of this work
In this work, we build on the work from [ZJWS14] and try to improve the output
quality in relation to naturalness and intelligibility. We introduce an approach based
on improving the unit codebook using a clustering technique.

1.2 Document overview
The remainder of this document is structured as follows: Chapter 2 introduces the
biological and technical fundamentals of speech and facial electromyography and gives
an overview over some of the work this thesis is based upon, chapter 3 introduces unit
selection and explains how it can be used for EMG-to-Voice conversion and chapter
4 gives an overview over the improvements to the unit selection conversion process
made in this work. Chapter 5 shows the results of experimental evaluations of the
improved process with various sets of parameters, and chapter 6 finally provides
some concluding remarks and an outlook on potential future work.



2. Fundamentals

This chapter introduces the physiological fundamentals of audible speech production,
digital audio recording and electromyography. It explains the audible- and EMG
features used in this work and introduces the basic principles behind unit selection
based EMG-to-speech conversion. Finally, it gives an overview over previous related
work.

2.1 Audible Speech
Audible speech is vocalized language. As an audio signal, it propagates through air
as a longitudinal (compression) wave. An illustration of this can be found in figure
2.1 - sound propagates as a series of high-pressure and low-pressure areas in air,
with spacing depending on sound frequency and intensity depending on the sounds
volume.

Figure 2.1: Sound propagation in air. Top: Pressure change relative to
normal. Bottom: Particle movement.

2.1.1 Human speech production

Humans produce speech by exhaling air from their lungs, which passes by various
obstacles that modify the stream of air before it leaves the body and thus change the
produced sound. Together with the cavities that the air passes through on its way -
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Figure 2.2: A cross-section of the human vocal tract, with places of
articulation marked.

the vocal tract - these articulators form the articulatory apparatus with its various
places of articulation. Sounds where the vocal tract is at least partially closed are
called consonants, whereas sounds where no such obstruction occurs are called vowels
[Can05, p. 58ff].

Figure 2.2 gives an overview of their locations within the vocal tract. The numbered
locations correspond to the following places [Can05, p. 47]:

0 Lower lip
1 Upper lip
2 Teeth
3 Alveoles
4 Palate
5 Velum
6 Uvula
7 Pharynx
8 Tip (apex) of the tongue
9 Blade (lamina) of the tongue)
10 Back (dorsum) of the tongue
11 Middle (radix) of the tongue
12 Glottis (including vocal folds)
13 Epiglottis
14 Nasal cavity

Other than by their place of articulation, different sounds in human speech - called
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phones - can be characterized by the articulators configuration, called the manner
of articulation [Can05, p. 70ff]:

Stop - an occlusive sound, i.e. a sound where the airflow through the vocal
tract stops completely before resuming again (e.g. the p in “pass”).
Nasal - a sound where air flows primarily through the nasal cavity (e.g. the n
in “nose”)
Fricative - a sound resulting from turbulent airflow at a place of articulation
due to partial obstruction (e.g. the f in “fricative”).
Affricate - a stop changing into a fricative (e.g. the j in “jam”).
Approximant - a sound where there is very little obstruction (e.g. the y in
“yes”).
Lateral - an approximant with airflow around the sides of the tongue (e.g. the
l in “lateral”).
Flap - a stop too brief to allow for buildup of air pressure (e.g. the t in butter
in northern American English).
Trill - a sound resulting from the repeated opening and closing of the vocal
tract, such as a “rolled r”.

The final way of differentiating phones is by their degree of phonation or “voicing”:
During speaking, air coming from the lungs first passes by the vocal folds. By
vibrating, they can add voicing to the produced sound (an example would be the j
in “Jane”), which would otherwise be voiceless (such as the ch in chain, which is
otherwise identical to the aforementioned j).

As voiced phones are generated by vibration of the vocal folds, they have a certain
pitch, called the fundamental frequency or F0. The variation of the fundamental
frequency over the course of an utterance is called intonation - except when used
to differentiate or inflect words, which is done in some languages (e.g. Mandarin
Chinese), in which case it is called the tone. For this work, it will be assumed
from now on, however, that this is not the case, and that intonation solely carries
paralinguistic information such as stress, mood and emotion.

2.1.2 Speech recording
The process of recording speech for digital processing is composed of three stages:
The conversion of physical sound waves to an electrical signal, the sampling of this
signal at discrete points in time, and the discretization of the sampled signal into
intervals that can be digitally represented with a certain number of bits.

The first step is performed using a microphone. Different microphone technologies
exist (e.g. induction microphones or condenser microphones), but they all achieve
the same thing: The conversion of audible sound into an analog voltage signal.

As digital computers cannot directly process such a signal, digitalization is required
before and further processing can take place. To this end, the signal is first sampled
at a certain sampling rate, usually given in Hertz, resulting in one analog value per
Hertz every second . The signal is then quantized by assigning discrete values to
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Figure 2.4: The two sine waves of different frequencies cannot be dis-
tinguished when only sampling at the marked positions. A signal re-
constructed after sampling the yellow sine (frequency 4.5πHz) with this
sampling frequency (4πHz) will contain only the blue dashed sine (fre-
quency 1πHz).

analog voltage intervals, which finally gives a time series of discrete values that can
be digitally processed. Figure 2.3 illustrates this process.

The digitalization process introduces error in each of its two steps. As can be seen
in figure 2.4, sampling can introduce error when the signal varies with a frequency
greater than half the sampling frequency (the Nyquist frequency). To avoid this
problem, recording systems generally use a low-pass filter, a filter that attenuates
signal components above a certain cutoff frequency, here set to be lower than the
systems Nyquist frequency (with some room to account for imperfect low-pass filter
behaviour). As long as a signal contains no components greater than the recording
systems Nyquist frequency, it can be perfectly reconstructed from the sampled signal.

The speech signal is mostly concentrated between 250Hz and 4000Hz, which would
allow for a sampling rate as low as 8000Hz, though higher rates are often used.

Quantization is the conversion of a real-valued into a discrete signal and thus
necessarily introduces round-off error. While this error cannot be avoided, it can be
managed by using a sufficient number of values (for digital speech processing, usually
16 to 32 bit numbers). The behaviour of the noise introduced by quantization is
then similar to that of additive white noise and not correlated to the signal - and
can be ignored.
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Figure 2.5: The windowing process (here, with a Blackman window) and
its “washing-out” effect on the signal spectrum (Connecting lines for sine
are drawn for illustration purposes only).

2.1.3 Speech representation
As explained in section 2.1.1, the process of human speech production can be
understood as the generation of a base signal - either an oscillation of frequency F0
or, in case of unvoiced phones, noise - followed by the application of a filter by the
vocal tract.
The speech representation used in this work is similar: The signal is represented
as the combination of F0 representing the source signal (0 during unvoiced speech)
and a set of Mel-Frequency Cepstral Coefficients (MFCCs) [Ima83] representing the
filter. The feature extraction process for MFCCs comprises of 4 steps: Windowing,
frequency analysis, cepstrum calculation and mel scale warping.

Windowing

Information about speech is temporally localized - extracting features from the entire
signal at once does not yield much information. The process of cutting the signal
into many smaller segments - called frames - for analysis is called Windowing.
This cutting process is equivalent to multiplying the time-domain signal with a
function that is non-zero only for a certain duration - the frame length - starting
at the beginning of the signal, shifting it forward a certain amount of time - the
frame shift - for each successive frame. In the frequency domain, this multiplication
becomes a convolution of the signal spectrum with the Fourier transform of the
window, which causes spectral distortion (called leakage).
The impact of leakage can be reduced by not simply cutting the signal up into parts
(i.e. windowing with a rectangular window, whose Fourier transform is the sinc
function) but instead using a window function whose spectrum is more benign. In
this work, a Blackman window is used. Figure 2.5 shows the windowing process and
illustrates the leakage effect.
The Blackman window is defined as:

w(n) = 1− 0.16
2 − 1

2 cos
( 2πn
N − 1

)
+ 0.16

2 cos
( 4πn
N − 1

)
(2.1)
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Figure 2.6: A 512-FFT to 26-Cepstral-Coefficients Mel filter bank.

Note that as the Blackman window rises and falls smoothly instead of infinitely
fast (as the rect function does), a single Blackman windowed frame contains mostly
information about the part of the signal it is centered on. To avoid losing information,
it is necessary to have frames overlap - in that case, the frame shift is smaller than
the frame length. This work uses a frame shift of 10ms and a frame length of 27ms,
following the work of [ZJWS14].

Frequency Analysis

The human ear processes audio in the frequency domain. Similarly, in the frequency
analysis step, a power-spectral representation of the signal - in this work, using a
fast Fourier transform (FFT) - is computed. The power spectrum is the square of
the absolute value of the complex spectrum.

Cepstrum Calculation

In the next step, the real part of the FFT of the logarithm of the frequency coefficients
is calculated. The result of this calculation is called a cepstrum. The logarithm is,
once more, for modeling human perception: Humans do not perceive volume linearly,
but logarithmically. After the FFT application, the different cepstral coefficients
provide information about the rate of change in any given frequency band.

Mel Filtering

The FFT produces a high number of cepstral components. To reduce the dimension-
ality of the feature sequence, neighbouring quefrencies can be binned together with a
filter bank. The filter bank used in this work is the Mel filter bank. This filter bank
again models human perception: It folds the spectrum into a set of coefficients that
the human hearing apparatus is just able to distinguish. Figure 2.6 shows such a
filter bank. In this work, the mel filtering is performed as a linear transform, after
cepstrum calculation. [Ima83] The result of applying this frequency warping to the
cepstrum are the final MFCCs.

2.1.4 F0 Extraction

The fundamental frequency is, in this work, extracted using the YIN algorithm
[DCK02], a modification of the auto-correlation method: The windowed signal
is cross-correlated with itself, and the F0 is extracted as the highest peak in the
correlogram within a specified pitch range (manually set, depending on the speaker).
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While it is possible to also estimate F0 trajectories from EMG data [ZJWS14], this
thesis focuses only on the mapping of MFCC vectors. For this reason, all audio
used for subjective evaluations in this work (Compare section 3.2.4 for details about
the audio synthesis and section 5.4.2 for details about the subjective evaluation
performed in this work) was synthesized with the F0 trajectories directly extracted
from the reference audio file, preventing differences in F0 mapping from affecting the
comparison results.

2.2 Facial Surface Electromyography
Electromyography (EMG) is the recording of electrical signals generated by skeletal
muscles in anticipation of and during movement. Surface EMG is the recording of
such signals using surface electrodes attached to the skin. This section gives a brief
introduction to the generation and recording of facial surface EMG signals related to
speech production.

2.2.1 Biophysics of Skeletal Muscle Movement
Human movement is achieved through skeletal muscles - tissue that, upon receiving
an electrical stimulus, contracts. Skeletal muscles normally come in antagonistic
pairs: The contraction of a muscle relaxes its antagonist and vice-versa (i.e. the
Biceps and Triceps).

Movement is initially initiated, voluntarily or reflexively, through the activation of
at least one motor neuron. This motor neurons synapses (called neuromuscular
junctions) are connected to many myocytes (muscle fibers). Together, a motor neuron
and the muscle fibers it innervates are called a motor unit.

In rest, the muscle fibers membranes are negatively polarized with a potential
difference of circa −60mV due to a difference in the concentration of sodium (Na+),
potassium (K+) and chloride (Cl−) ions inside and outside of the cell: The membrane
allows K+ ions to pass to the outside, which happens until the electrical potential
and diffusion pressure balance out.

Upon activation, the motor neuron releases the neurotransmitter acetylcholine into
the synaptic cleft, which binds to post-synaptic receptors that cause the membrane
potential to become slightly more positive. Once it is sufficiently so, the cells
sodium/potassium channels open, allowing Na+ to rush into the cell - which causes
the local membrane potential to rapidly become even more positive, resulting in an
action potential. The local depolarization causes further opening of sodium channels
along the muscle fiber, allowing the action potential to progress along it [SL11, p.
30ff]. Figure 2.7 illustrates this action potential generation and conduction.

Inside the cell, this causes (Via the secretion of another ion, Ca++ [MP04, p. 17f])
myosin heads inside the myofibrils to repeatedly bind to actin filaments and fold
over, causing the myosin and actin filaments inside the muscle cell to slide past each
other and shortening the cell [SL11, p. 26f].

After some time, the Na+ channels close again. Sodium is once again prevented
from streaming into the cell, which allows the K+ ions to return the cell membrane
to its resting potential (Superfluous Na+ ions are eventually removed from the cell
by the sodium-potassium pump).
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Figure 2.7: Generation (left) of action potentials and their conduction
(right) along a muscle fiber.
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Figure 2.8: Schematic depiction of the structure of a skeletal muscle.

Figure 2.8 shows the structure of a skeletal muscle from the complete muscle over
single muscle fibers - with a motor unit highlighted - down to myocytes and myofibrils
with the actin fibers and myosin heads that are responsible for producing the actual
cell contraction.

Electromechanical Delay

Muscles, when innervated, do not contract instantly - there is a small delay between
membrane depolarization and movement onset, called the electromechanical delay
(EMD) [CK79]. The exact delay depends on the muscle and innervation speed and
strength. The model used for EMD in this paper is relatively simple: The EMG signal
is universally delayed by 50 milliseconds, a value that was empirically determined in
[JSW+06].
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Figure 2.9: Unipolar (left, with the reference electrode on the electrically
inactive ear lobe) versus Bipolar (right, deriving between two electrodes
on electrically active territory) signal derivation.

2.2.2 Surface EMG Recording
As explained in the previous section, the movement of skeletal muscles is controlled
by electric membrane potentials. These potentials, through volume conduction in
the tissue surrounding muscle fibers, can be measured via surface electrodes. This is
the basis of surface EMG recording.

The amount of force a muscle generates depends on two factors: The amount of
motor units recruited, and the rate at which they are fired [MP04, p. 97]. This gives
five factors that determine what kind of signal arrives at an EMG electrode: Active
motor units, the units firing rate, the position of the electrode relative to the units
myocytes, the conduction between myocytes and electrodes, and body-internal as
well as external noise.

The effect of volume conduction in tissue on the surface signal is two-fold: It leads
to a spatial low-pass filtering (washing-out over space) of the signal [MP04, p. 89],
as well as the summation of signals from multiple sources.

The actual signal measured is always a potential difference between two electrodes.
This is done either in a unipolar configuration, between an electrode on an electrically
active area and a reference electrode on an electrically inactive area, or in a bipolar
configuration, between two (usually close by) electrodes both on the electrically active
area (Compare figure 2.9). The advantage of bipolar measurement, coupled with
differential amplification, is a much reduced sensitivity to common-mode interference
(noise that affects both electrodes in the same way). Many common artifacts, such
as power line noise or influence from non-target muscles, have this property.

For the recording of the EMG data used in this work, the process was as follows
[JSW+06]:

• Unipolar or bipolar derivation with surface electrodes.

• DC offset removal.
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• Differential amplification of the signal.

• Low- and high-pass filtering for artifact removal.

• Digitalization (as already described in section 2.1.2).

• Application of a 50ms delay to account for EMD.

• Windowing with a rectangular window (Refer again to section 2.1.2).

• Feature extraction

• Feature reduction

2.2.3 EMG Time-Domain Features
The relationship between facial surface EMG signal of the muscles controlling the
articulatory apparatus and the generated speech is non-trivial. To learn useful
relationships, in practice, features must be extracted from the signal in some way.
The time-domain features used in this work are based on [JSW+06].
In the following description of the features, let x[n] denote the n-th signal value.
With p[n] being the nine-point double averaged signal:

w[n] = 1
9

4∑
k=−4

v[n+ k], where v[n] = 1
9

4∑
k=−4

x[n+ k]. (2.2)

we can define a high-frequency signal:
p[n] = x[n]− w[n] (2.3)

as well as a rectified high-frequency signal:
r[n] = |p[n]| (2.4)

Additionally, for any given feature f , within a frame of size N , f̄ denotes the frame-
based mean:

f̄ = 1
N

N−1∑
n=0

f [n] (2.5)

Pf denotes the frame-based power:

Pf =
N−1∑
n=0

f [n]2 (2.6)

and zf the frame-based zero-crossing rate (the number of times the signals sign
changed).
We can now define the TD0 features as a combination of all of the above:

TD0 = [w̄,Pw,Pr, zp, r̄] (2.7)

and more generally the TDN features as a stacking with left and right context of
size N each (for a total of 2 ∗ N + 1 sets of TD0 features). In this work, TD15
features are used, giving a context of 15 frames to the left and right each for every
feature frame.
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2.2.4 LDA Feature Reduction
The TD15 features provide a great amount of context for every single feature frame.
As a result, the TD15 feature vector is very large, which can lead to numerical and
memory problems.

In order to address this and to improve selection performance, the dimensionality of
the feature vector is reduced using Linear Discriminant Analysis (LDA) [Rao48]. LDA
is a technique that linearly transforms a set of feature vectors so that each additional
dimension contains the maximum amount of information that helps separate the
data into a set of assigned classes - it maximizes the ratio of between-class variance
to within-class variance.

In this work, the classes used are phone-substate labels (For each phone, the phones
beginning, middle and end), force-aligned to the audible recordings using a speech
recognizer. The LDA transformation matrix is calculated on the TD15 features of
the training set of each session. This matrix is then used to transform all feature
vectors of that session. The resulting transformed feature vector is finally cut at 32
dimensions, resulting in our final TD15-LDA features.

2.3 Related work
Using electromyography to infer information about speech, audible or silent, has been
the subject of a growing body of past research. This section gives a short overview
over some past results.

[MO86] is an early investigation into the relationship between EMG signals and
speech. The authors, with the goal of working towards speech prostheses for people
who have lost the ability to speak, show that a statistical relationship between facial
electromyographic signals and audible speech exists.

[CEHL01] try to use facial EMG to enhance the performance of an (audible) speech
recognition system and to this end, try to perform speech recognition on isolated
words with a 10 word vocabulary, with accuracies of 89% to 98%, using an LDA
classifier. They later improve on their results in [CEHL02], using a Hidden Markov
Model classifier to achieve more stable recognition when some amount of temporal
variation is introduced.

[JSW+06] introduce a first EMG-based continuous speech recognition system, based
on modeling and recognizing the EMG signals of single phonemes. They evaluate
multiple sets of features and the effect of delaying the EMG signal to account for
EMD, finally achieving a word error rate of 32% on a 108 word vocabulary. In [SW10],
they improve upon these results by modeling phoneme co-articulation, achieving
similar performance in a multi-speaker system.

[TWS09] is the first paper that performs direct conversion of EMG signals to audible
speech, without performing any recognition. They use feature extraction methods
similar to [JSW+06] and map the feature set to a set of mel-cepstral coefficients using
Gaussian Mixture Model Mapping, a technique previously used for voice-to-voice
conversion. They achieve a best average Mel-Cepstral Distortion score (Compare
section 5.2) of 6.37, though with large variations between utterances (with a standard
deviation of 2.34).
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[WSJS13] introduce the use of electrode arrays for EMG silent speech interfaces,
replacing the complicated setup required for attaching a set of electrodes in certain
places in the face with a more streamlined process. Using this new setup to perform
speech recognition, they manage to achieve an average word error rate of 10.9% in a
speaker-dependent system.

[ZJWS14] introduce the use of unit selection for EMG-to-speech conversion. As this
work continues the investigation into unit selection based EMG to Speech conversion,
the approach is explained in detail in chapter 3.



3. Basic Unit Selection

An EMG-to-Speech conversion system is a system that takes facial electromyographic
recordings as its input and outputs audible speech synthesized from this EMG data
that, ideally, closely matches the spoken or (in the case of a Silent Speech system)
mouthed words.

This chapter introduces unit selection, as originally used for speech synthesis [HB96]
as well as the changes necessary to use unit selection as a basic EMG-to-Speech
conversion system, as introduced by [ZJWS14], which this work builds upon and
uses as a baseline system for evaluation.

3.1 Unit Database
Unit selection, as the name implies, builds utterances by selecting and then concate-
nating units of sound from a unit database, called the unit codebook. To understand
the makeup of this codebook, we must first look at what a single unit consists of.

A unit, in unit selection, is made of a source feature sequence and a target feature
sequence, both of a certain length, the unit width (this work, following [ZJWS14],
uses units with a width of 15 frames). The target feature sequence is made up
of vectors of audio data, from which the output sequence is eventually generated.
The source feature sequence contains the features used in the selection process to
determine which unit fits best. In the case of EMG-to-Speech conversion, the source
feature sequence contains the EMG-TD15-LDA data, as described in section 2.2.3
and the target feature sequence contains MFCC and, if F0 data is mapped along
with the MFCCs F0 data, as introduced by section 2.1.3.

In this work, the basic unit codebook is created by extracting units from a corpus of
synchronous recordings of EMG and speech data. This is done by first performing
feature extraction on the complete data sequences, then extracting segments as long
as the unit width from both, which together make up a single unit. This is done
starting at every frame in every utterance in the training set for the corpus, resulting
in a large codebook of units for the unit selection algorithm to choose from. Figure
3.1 illustrates the codebook creation process.
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EMG
Audio

...

Unit 1

Unit 2

Unit 3

...

...

...
Figure 3.1: Creating a unit codebook from parallel feature sequences,
with an exemplary unit width of 6. Note that each square represents an
entire feature vector.

3.2 Conversion Process
To use a prepared unit codebook to convert a sequence of EMG feature vectors to
an audible utterance, a four-step process is used: First, the EMG feature sequence
is cut up into a sequence of test units, then, unit selection is performed on the test
units, the resulting target sequences are overlapped to create a result audio feature
sequence, and this audio feature sequence is then re-synthesized, creating audio
output.

3.2.1 Test Unit Creation
The process of creating test units is similar to the codebook creation process:
Segments as long as the unit width are extracted from the EMG feature sequence,
though this time, the unit shift between segments is not necessarily chosen as 1 frame,
but can be varied (In this work, a unit shift of 2 frames, empirically determined to
be a good value by [Zah14], is used).

3.2.2 Unit Selection
The test units contain only a source feature sequence, so appropriate audio data has
to be found. This is done by finding the sequence of units from the unit codebook
which minimizes the average cost - made up of a weighted sum of a target cost and
concatenation cost - given the test units.

The target cost is computed by evaluating a cost function for a test units source
feature sequence and a codebook units source feature sequence. It ensures that units
that match the input EMG data are selected.

The concatenation cost, on the other hand, makes sure that the resulting output
sequence sounds reasonably natural. It is computed by evaluating a cost function for
the overlapping frames of two adjacent candidate output units from the codebook.
Figure 3.2 illustrates how the cost functions for selecting one unit are evaluated.

The cost function, in each case, is a single-valued function that takes as input two
feature sequences and computes a similarity measure. Different cost functions can
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Figure 3.2: Illustration of how target (top) and concatenation (bottom)
cost are calculated during unit selection.
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Figure 3.3: Creating a list of test units and selecting units from the unit
codebook that match these test units, shown here with an exemplary
unit shift of 2.

be used to select units (i.e. an euclidean distance, a cosine distance, ...), and section
5.3.2 explains some possible cost functions in more detail. Figure 3.3 shows the
process of creating test units and selecting appropriate units from the unit codebook.

If the weight for the concatenation cost is non-zero, the minimization of the cost for
an utterance requires finding the Viterbi path through a graph where each codebook
unit is a state, with transition weights and observation likelihoods according to the
cost functions used. As the graph is fully connected and can be relatively large, it is
advisable to restrict the search beam to a limited number of active paths [ZJWS14].

If the concatenation cost is set to zero, leaving only the target cost as the selection
criterion, the process becomes simpler: In this case, it is sufficient to independently
select the unit with the lowest cost for each test unit. It is, of course, also possible
to employ a similar strategy when the concatenation cost weight is more than zero:
A greedy selection of units according to cost, while not as good as a Viterbi search,
can deliver reasonable results very quickly.
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Figure 3.4: Creating audio output by overlapping of the target feature
sequences followed by MLSA synthesis, shown here with an exemplary
unit shift of 1.

3.2.3 Overlapping
The result of the unit selection process is a set of units with target (audio feature)
sequences - however, due to the unit shift being smaller than the unit width, there
is always (except for the first and last frames) more than one frame of audio data
from the units target feature sequences for every frame of input data. To create the
output feature sequence, all frames that match the same input frame need to be
coalesced into a single frame of data. This is done by taking their mean.

3.2.4 Synthesis
Finally, after an audio feature sequence has been obtained, to generate actual audio
output, the audio features have to be turned back into proper wave audio, essentially
reversing the feature extraction process.

Analogous to the feature extraction process, this work uses Mel-Log Spectrum Approx-
imation (MLSA) [FTKI92], using the synthesis tools from the HTS speech synthesis
toolkit to perform this step [TZB02]. Figure 3.4 illustrates the process of creating
audio output from a list of selected units.
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Basic unit selection, as described in chapter 3, already provides a reasonable way to
convert EMG data to Speech, but it is not without its faults. This chapter describes
potential problems with the unit selection approach and the way this work tries to
address them.

4.1 Problems with Basic Unit Selection
Unit selection, in speech synthesis as well as in EMG-to-speech conversion, creates
an output sequence by direct concatenation of data seen in the training set. Unlike
parametric synthesis, which can potentially create good output even when the
test data does not match the training set particularly well, unit selection tends to
break down in the presence of data for which the unit database does not contain
well-matching units.

Another problem can occur when a unit has a low target cost for test units that do
not actually have a sequence similar to the desired target sequence, which can occur
either due to inadequacy of the target cost function or in the presence of artifacts
(e.g. a weak signal due to bad electrode contact might be confused with silence,
similar externally induced EMG or audio artifacts might be present in two otherwise
unrelated units, ...). This can lead to outlier units which, due to the nature of unit
selection, can lead to “stuttering” over a large section of the output.

It is for these reasons that, given an utterance to convert, unit selection generally
produces either very good and natural sounding results, or (still very natural sounding)
unintelligible nonsense. For unit selection based EMG-to-speech conversion, this can
be such a problem that it is in fact better to not even consider the concatenation cost
at all during selection, as even with very little weight assigned to it, it can dominate
the selection process [ZJWS14].

This leads to two obvious ways in which unit selection might be improved: Increasing
the size of the unit codebook, and improving the quality of the codebook units.

Adding more units to the codebook seems like an easy way to achieve better results,
but is difficult in practice: Having a larger number of units does not necessarily
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improve the quality of the unit selection conversion output unless they match the
units used in testing. Due to inter-person and even inter-session differences in
the EMG signal, caused by variation in electrode positioning and skin properties
[WSJS13], simply creating a very large codebook from multiple recording sessions is
insufficient.

4.1.1 Preliminary Experiment: Codebook Size Reduction
Even if differences between sessions were accounted for, it is not at all clear that
simply adding more units to the codebook actually improves the output results: If
the added units are very similar to units already in the codebook, all that their
addition achieves is greater redundancy, which does nothing to improve the quality of
the output. Another downside of simply adding more units is that - since performing
unit selection requires the calculation of the cost function at least once for every pair
of test- and codebook units - a large codebook is undesirable when working towards
real-time conversion.

In a preliminary experiment, we evaluated the effect of reducing the codebook size
dramatically. The experiment was performed on a single session, Spk1-Array - for
details on the data and basic unit selection setup, refer to section 5.1 in the next
chapter of this work.

Unit selection conversion was performed within the training set in a cross-evaluation
configuration: For every training utterance, a unit codebook was created from
the training set with that utterance held out. Unit selection conversion was then
performed for the held out utterance. Finally, the list of units used to create the
output was saved. The process was then repeated for with audio features as both
source and target feature sequence and using an euclidean distance as the cost
function (Since source and target feature sequences are identical, this configuration
outputs the best possible audio sequence that can be created with the units from
the unit codebook).

By combining the lists of used units and then culling units that were used very little
or not at all, it is possible to reduce the codebook to a fraction of its size. This
culled codebook was then used to evaluate conversion quality on the development
set. Figure 4.1, a histogram of unit counts (i.e. with the bars of bin number n
showing how many units were used n times when converting an utterance in during
the cross-evaluation process), clearly shows that the majority of units is hardly used
at all during conversion.

In our preliminary experiment, we reduced the codebook to only units that were
used at least once both in the audio-audio conversion (leaving only units that provide
good output) and emg-audio conversion (leaving, of those, only those units that the
unit selection is actually likely to pick). The size of this new codebook is 17836 units,
down from 159987.

This near tenfold reduction leads to a much quicker conversion and hardly affects
quality at all: The reduced codebook achieves a frame-based MCD score (Compare
section 5.2) of 5.9 (Std. deviation 0.38), compared to 5.85 (Std. deviation 0.34) with
the original codebook. Reducing the list of units even further by using only those of
the previous 17836 units that were used at least twice in the audio-audio conversion
results in a codebook with only 6931 units that still performs adequately (MCD
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Figure 4.1: Histogram of unit usage counts. Note the logarithmic scaling
of the occurrence axis. Counts that occur only once and non-occurring
units omitted for clarity (Counts above 21 occur at most once, and no
single unit occurs more than 45 times).

score 5.98, standard deviation 0.34), while only taking a fraction of the time the
original system needed for conversion.

From these results, it is clear that reducing codebook redundancy can be done
without taking a hit to quality. As the rest of this work will show, it is possible to
reduce the codebook size even further than this while actually improving the quality
of the converted speech.

4.2 K-Means Clustering
For the reasons presented in the previous section, reducing the size of the unit
codebook is a desirable goal. In this work, that goal is achieved through unit
clustering using the k-means algorithm. This section explains that algorithm and
how it can be applied to improve the quality and performance of unit selection
emg-to-speech conversion.

4.2.1 Algorithm

The K-Means algorithm [Mac03, p. 284ff] is an algorithm for clustering a set of
N > K D-dimensional vectors into K clusters. The algorithm consists of three steps:

1. Initialize the set of cluster centroids.

2. Assign each input vector to a cluster.

3. Recompute centroids as cluster means and repeat from step 2 until some
condition is met.
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Initial clusters Assignments changed Converged state

Figure 4.2: Clustering 2-dimensional data into 3 clusters using the K-
Means algorithm, aborting after unit assignments stop changing.

Figure 4.2 shows an example of the K-Means algorithm clustering a set of 2-
dimensional vectors into three clusters. A more detailed description of the algorithm
follows. For this purpose, let xn be the nth of N input vectors, with the per-element
variance of the data normalized to 1, and d(x, y) a D-dimensional metric (In this
work and from now on, the euclidean distance). Let mk denote the kth of K current
cluster centroids and An ∈ {1..K} the index of the cluster that the nth vector is
currently assigned to.

Initialization

The initialization step can be performed in several different ways as long as all mk

are initialized to different values. A common method is initializing the centroids
randomly. Another common method, the method used in this work, is picking the
first K input vectors as initial centroids:

m1..K = x1..K (4.1)

Assignment

In the assignment step, a new cluster assignment is computed for each input vector.
This is done by finding the centroid that the current input vector has the smallest
distance to:

An = arg min
1..K

d(xn,mk) (4.2)

Centroid Re-Computation

The new assignments are now used to re-compute the centroid for each cluster as
the arithmetic mean of all the vectors assigned to it:

mk =

∑
n∈{m|Am=k}

xn∑
n∈{m|Am=k}

1 (4.3)
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This is repeated until a termination condition is met. One possible termination
condition is running the algorithm until only some fraction of cluster assignments
change. The output of the algorithm is the cluster assignments for all vectors.

It is possible to let the algorithm run until none of the assignments change at all:
While the K-Means algorithm is not guaranteed to find the assignment that minimizes
the distance of the vectors to their assigned centroid globally, it is guaranteed to
converge to a local optimum as long as the re-computation step only ever reduces
average distance of vectors in a cluster to the centroid according to the metric used
(this is the case for the euclidean metric).

In this work, clustering was terminated when the assignment of less than 0.1 percent
of vectors changed during an iteration. To be able to run experiments quickly, a
parallelized GPU implementation of the K-Means algorithm, using the NVidia CUDA
toolkit, was used [Giu].

4.3 K-Means Codebook Clustering

As the preliminary experiment in section 4.1.1 has shown, reducing the codebook size
without impacting quality is feasible and does not require the use of any particularly
complicated method - simply restricting the codebook to units that are, in some
sense, good, is already sufficient. However, this simple method only achieved the
same output quality and did not, in fact, improve it.

The goal of our k-means codebook clustering approach is, then, to not only reduce
the size of the codebook, but also to improve the makeup of each single unit. In this
way, we hope to be able to use less units to generate better output.

4.3.1 Principle

The main reasons why unit selection sometimes produces bad results, as explained
in section 4.1, are the lack of a suitable unit in the codebook and the selection of a
wrong unit from the codebook even though a better one would have been available.
Codebook clustering addresses both of these problems by turning the basic units
from standard unit selection, as introduced in chapter 3, into cluster units, which
are more prototypical of the audio- and EMG snippets which they represent.

4.3.2 Cluster Unit Creation

Cluster units are created by first applying the k-means algorithm to some combination
of the feature sequences of each unit from the set of basic units. The cluster
assignments resulting from this are then used to generate cluster units - one cluster
is turned into one cluster unit by computing the dimension-wise arithmetic mean of
all source- and target feature sequences from units assigned to that cluster (Compare
figure 4.3). The resulting units are output, and can be used as a new codebook to
perform unit selection as before (refer to section 3.2.2 for details about the selection
process).
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Figure 4.3: Creation of cluster units from basic units. The units are
first assigned a cluster by performing K-Means clustering on some unit
features, then new cluster units are created by taking the column-wise
mean of the unit features.

4.3.3 In-Cluster Selection

While cluster unit selection can deliver improved selection quality and speed, it is
not without problems. The clustering process averages many units that may in
some cases not be perfectly aligned. This can cause a blurring of phones at phone
boundaries and an overall less sharp pronunciation in the conversion output.

To address this, we can use a technique similar to how unit selection is used originally
in text-to-speech synthesis. [BT97] use clustering (there, based on automatic creation
of decision trees) to find similar units. They then select a cluster of units based on a
target cost measure, and units from within the correct cluster based on concatenation
cost.

The same technique can be applied with little modification to cluster unit selection:
Unit clusters are selected from the codebook according to target cost between test
unit EMG features and mean codebook unit EMG features, then the Viterbi path
through a graph where only transitions to units from the correct cluster are allowed
is computed to generate the output unit sequence, making the selection a two-step
process. The rest of the conversion process is kept as before.

Figure 4.4 illustrates the entire in-cluster selection process. Compare this to figure
3.3, which demonstrated the unit selection process in basic unit selection. The
selection process for cluster unit selection without in-cluster selection is the same
as this basic unit selection process, except with the unit codebook filled with the
cluster units.

This in-cluster selection allows to retain the benefits of clustering while still generating
crisp audio output. An additional benefit gained is that, as the usage of units that
match the test units is ensured by selecting only from matching clusters, it is now
feasible to use a non-zero weight for the concatenation cost during conversion without
overly biasing the process towards well-concatenating, but ultimately unfitting units.

In addition to qualitative benefits, the restriction of the Viterbi search to fitting
units, while still being slower than a simple greedy algorithm, allows the search for
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Figure 4.4: Cluster unit selection with in-cluster selection: In step 1,
clusters are selected by the target cost of the mean unit. In step 2, units
assigned to the selected clusters are selected by concatenation cost.

the optimal unit to complete in less time than if the entire unit codebook would
have to be considered.
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5. Evaluation

This section describes the corpus used in our experiments and the process and
results of tuning the parameters of the proposed cluster-based unit selection method,
followed by a final evaluation of the method on unseen data, objectively using an
audio distance measure and subjectively using a listening test.

The baseline system, in this chapter, is always the basic unit selection EMG-to-speech
conversion system [ZJWS14], as described in section 3, using the best-performing
distance from that work (the cosine similarity) except in section 5.3.2, where two
new distance functions are compared to the cosine similarity.

5.1 Data Corpus
The corpus used in this work is based on the corpus used in [ZJWS14], to allow for
the comparison of results. In addition to the four sessions used there, this work
also uses two new, larger sessions to evaluate the performance of unit selection and
cluster-based unit selection on large training data corpora.

The corpus consists, in total, of six sessions of phonetically balanced English speech,
recorded by two male speakers and one female speaker. For each utterance, the
corpus contains synchronously recorded EMG signals and audible speech.

For the EMG recordings, two separate recording setups were used: A single-electrodes
setup, and an electrode array setup, first used for EMG-to-speech conversion by
[WSJS13]. The audio signal was, in both cases, recorded with a standard close-talking
microphone and sampled at 16 kHz.

5.1.1 EMG Recording Setups

The single-electrodes setup uses a set of 10 electrodes, 3 of which are used in a
unipolar configuration with a reference electrode on the mastoid portion of the
temporal bone (behind the ear) and 6 of which are used in a bipolar configuration,
for a total of 6 channels. The electrodes were, based on the work of [MHMSW05],



28 5. Evaluation

Figure 5.1: The single-electrodes recording setup, with electrode po-
sitions marked. White numbers indicate bipolar derivation, whereas
black numbers indicate unipolar derivation against a reference electrode
attached behind the ear.

positioned to capture signals from important articulatory muscles (compare figure
5.1, numbers here correspond to numbered electrodes or electrode pairs):

2, 3 the levator anguli oris,
2, 3 the zygomaticus major,
4, 5 the platysma,
5 the depressor anguli oris,
1 the anterior belly of the digastric and
1, 6 the tongue.

The signals from these electrodes were captured using a 6 channel EMG recording
system (Becker-Meditec Varioport), filtered with a high-pass filter at 1 Hz for DC
offset removal and then sampled at 600 Hz.

For the array recording setup, we used two electrode arrays: One large array, with
4x8 electrodes arranged in a regular grid with an inter-electrode distance of 10 mm,
and one small array with 8 electrodes in a linear configuration, with an inter-electrode
distance of 5 mm.

The large array was positioned on the cheek, capturing signals from muscles respon-
sible for tooth and lip movement, while the small array was positioned under the
chin, capturing signals from the tongue. Figure 5.2 illustrates the placement of the
electrode arrays.

The electrodes in the arrays were used in a bipolar derivation configuration, with one
channel recording the difference between two adjacent electrodes within a row. This
gives 7 channels per row for the large array, and 7 channels for the small array, for a
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Figure 5.2: The array recording setup, with a 4x8 electrode array on the
cheek and a smaller 1x8 electrode array under the chin.

total of 4 ∗ 7 + 7 = 35 channels. The signals for all channels were recorded using an
OT Bioelettronica EMG-USB2 EMG recording system, sampled at 2048 Hz.

During a recording session, each single utterance to be recorded was displayed (as
text) to the speaker being recorded, who was allowed to record the utterance at their
leisure, using a push-to-talk setup to start and end utterance recording. Speakers
were allowed to re-record utterances if desired. The recording was supervised by a
recording assistant, who also attached the recording electrodes before the start of the
recording session and verified that electrodes did not detach from the skin during
recording by visual inspection of the recorded EMG signal.

5.1.2 Signal Synchronization
Training an EMG-to-speech mapping system requires parallel EMG and speech data.
As delays introduced by the signal processing and recording hardware could cause
one signal to lag behind the other, one channel in each setup was used to record a
hardware marker, to allow for synchronization of the signals after recording. This
was achieved by simultaneously pulling the marker channel for all setups high at the
start of each utterance.

After recording and before any further pre-processing, this marker was used to
determine a common cutting point for each utterances EMG and audio signal,
compensating for any lag that different recording devices and software may have
caused.

5.1.3 Session Details
The corpus consists mostly of sessions of around 500 phonetically balanced English
utterances, based on [SW10]. The two larger sessions additionally incorporate
utterances from the Arctic [KB04] and TIMIT [GC+93] corpora, giving a total of
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Session
Accumulated
data length, in
(mm:ss)

# of
train/eval/dev
utterances

Train Eval Dev Train Eval Dev
Spk1-Single 27:10 01:19 500 20
Spk2-Single 26:54 00:49 496 13
Spk1-Array 31:01 01:59 00:47 500 30 10
Spk2-Array 25:44 01:10 500 20
Spk1-Array-Large 76:44 00:48 1093 10
Spk3-Array-Large 123:04 00:45 1968 10
Total 310:37 06:50 00:47 5057 103 10

Table 5.1: Data corpus information for the recorded utterances, including
speaker/session breakdown. Speaker 1 and 2 are male, speaker 3 is female.

1103 utterances for the smaller and 1978 utterances for the bigger of these two new
sessions.

The sessions were split into a training set, used to train the mapping system, and an
evaluation set, used in the final evaluation to judge system performance. For one
session, a development set was held out from the training set. This development set
was used during the development and parameter tuning of the system.

Table 5.1 gives a detailed overview of the sessions and their breakdown into training,
evaluation and development sets.

5.2 MCD Score

To objectively evaluate conversion results, a measure of the difference between conver-
sion result and reference is needed. Ideally, this measure should be strongly correlated
with the naturalness and intelligibility of the converted utterance. This work uses the
mel-cepstral distortion (MCD) score [Kub93] to perform such evaluations. The MCD
score is defined as a scaled Euclidean distance between MFCC vectors excluding the
first coefficient:

MCD = 10/ ln 10

√√√√2 ·
25∑

k=2
(mfccconv[k]−mfccref [k])2 (5.1)

Calculating an MCD score frame by frame requires that the audio files being compared
are properly aligned to each other. When evaluating frame-based conversion methods,
this is easily ensured. In unit selection, it might be desirable to compute a better
alignment. For this reason, this work considers not only the MCD score computed
frame by frame, as above (Referred to as the “Frame-Based MCD” from now on),
but also the “DTW-MCD” score after the MFCC sequences of conversion result
and reference have been aligned using the dynamic time warping (DTW) algorithm
[Vin68] minimizing MCD.
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5.3 Cluster Unit Selection Parameters
Unit selection based on unit clustering, as described in chapter 4, has many parameters
that affect the performance of the system. To choose reasonable parameters for the
evaluation of the system, we ran several series of experiments on our development
set. This section will describe the parameters that needed to be set, the experiments
we ran to determine them, and the parameters chosen for the evaluation on the
evaluation data.

5.3.1 Clustering Features
The clusters found by the K-Means algorithm depend on what set of features is
passed in - it will find different cluster assignments when clustering by audio, by EMG
data, or by both. This section evaluates five different ways of clustering units for unit
selection: Sequential Audio-EMG clustering, combined Audio-EMG clustering, EMG-
only clustering, Audio-only clustering and label-assisted clustering. All evaluations
in this section are performed with the basic cluster-based unit selection, i.e. without
in-cluster selection.

Sequential Audio-EMG clustering

The sequential Audio-EMG clustering approach was the first approach that this
work evaluated. As the name implies, clustering is done sequentially in two steps.
First, all units are clustered based on the contained MFCC feature vectors. Within
each cluster, a second iteration of clustering is performed, this time according to the
contained units EMG-TD15-LDA feature vectors.

This approach of splitting the clustering into two steps has several advantages. One
is that the quality improvements of clustering on the audio side versus clustering on
the EMG side can be individually evaluated, with different cluster counts. Another
is that, since the complete unit set only has to be considered in the first step when
clustering with the comparatively low-dimensional MFCC vectors, clustering is quick.

The results of performing unit selection based on the sequential clustering of units,
for a large selection of cluster counts for MFCC and EMG, can be see in figure 5.3
(Note that, while figure 5.3 reports, for illustration purposes, both frame-based and
DTW-MCD, both MCD scores are proportional, which was also the case for all other
series of experiments. Therefore, for brevity, the rest of this section will only report
the frame-based MCD).

One thing that can be seen right away is that the clustering unit selection approach
beats the baseline systems MCD score by a large margin even with a relatively small
amount of units: The system using 150 MFCC clusters and then, within each MFCC
cluster, 5 EMG clusters, for a already beats out the baseline systems frame-based
MCD score by around 0.35 points - with only 750 units, an order of magnitude less
than the baseline system.

Looking more closely, two trends can be identified: Using more audio clusters
improves the MCD score, while using more EMG clusters worsens it. This raises the
question of whether it is better to cluster based on audio data alone, something that
will be investigated in section 5.3.1.

Unit Length
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Figure 5.3: Cluster unit selection with split clustering, using different
cluster counts. Lower is better, error bars indicate 95% confidence
interval.

To verify the results of [ZJWS14] concerning optimal unit length on our new cluster-
based unit selection system, we tested the system, using sequential Audio-EMG
clustering, with units of a shorter length than the usually used 15 frames per unit.
The results of this evaluation, using 7 frame units, can be seen in figure 5.4.
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Figure 5.4: Cluster unit selection on 7 frame units with split clustering,
using different cluster counts. Lower is better, error bars indicate 95%
confidence interval.

Our results are similar to those of [ZJWS14]: The system using the shorter units
performs worse than the system using the long units. We therefore decided to use
long units in the rest of our evaluation.

Combined Audio-EMG clustering

While the sequential clustering approach is very interesting for an initial investigation
into the impact of using clustered units in unit selection, it has two obvious drawbacks
when trying to achieve good conversion quality. One is that there are two cluster
counts to optimize instead of one, complicating the search for good parameters. The
other is that, even with very good cluster counts, a best cluster assignment obtained
by clustering only on parts of the vectors to be clustered is not necessarily even
locally optimal for the entire vector.
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For this reason, we evaluated combined clustering: Clustering the units based on
the entire combined feature vector of MFCC and TD-15 data. The results of unit
selection based on units obtained through combined clustering can be seen in figure
5.5.
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Figure 5.5: Cluster unit selection with combined EMG-MFCC clustering,
using different cluster counts. Lower is better, error bars indicate 95%
confidence interval.

As can be seen, the more computationally expensive combined clustering approach
does pay off in quality: The best combined clustering based system manages to
achieve a better MCD score than any of the split clustering systems evaluated.

Another trend that can be seen in the combined clustering is that of an u-shape
curve when evaluating for different cluster counts: Using too few clusters does not
yield optimal results, but after a certain point, using any more units diminishes the
effects of the clustering, and the MCD score begins to rise again.

EMG-only clustering

In section 5.3.1, a larger number of EMG clusters actually worsened the resulting
output. To further investigate this phenomenon, we performed clustering based on
the units EMG feature vectors only. The result of using thusly clustered units in
unit selection are shown in figure 5.6.
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Figure 5.6: Cluster unit selection with EMG (TD15-LDA) only clustering,
using different cluster counts. Lower is better, error bars indicate 95%
confidence interval.
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As expected, the performance is sub-par, with none of the systems achieving a
significant improvement over the baseline, and some actually being worse. We
suspect that this is due to clustering based on euclidean distances not being able to
capture similarities in the EMG-TD15-LDA data well. This is supported by findings
from [Zah14], which found that the euclidean distance was not a good target cost
for unit selection based EMG-to-speech conversion (For further evaluation of target
cost functions, refer to section 5.3.2).

Audio-only clustering

In the sequential clustering approach in section 5.3.1, a larger number of MFCC-side
clusters seemed to improve performance, while a larger number of EMG-side clusters
seemed to worsen it. Taken to it’s logical conclusion, this gives MFCC-only clustering.
The results of performing unit selection with cluster units obtained by clustering
based on only the MFCC vectors of the units can be found in figure 5.7.

baseline 2000 4000 6000 8000 10000 12000 14000
4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

6.25

Audio Clusters

Fr
am

e-
B
as
ed

M
C
D

Figure 5.7: Cluster unit selection with MFCC-only clustering, using dif-
ferent cluster counts. Lower is better, error bars indicate 95% confidence
interval.

It can be seen that the audio-only clustering system achieves a quality of output
that is similar to that of the combined clustering system. While the performance
is not better, audio-only clustering does have one major advantage over combined
clustering: As the features used in clustering are only the 25 MFCCs, clustering is
much less resource-intensive. With quality being the same and clustering requiring
far less memory and time, we decided to use audio-only clustering as the basis for all
further investigations.

Label-assisted clustering

The idea behind the label-assisted clustering approach is to use additional information
to aid the clustering process. In unit selection based speech synthesis, the source
features for unit selection are phone-based - either plain phone label or phonetic
features (such as the the position where a phone is formed or its voicedness, compare
section 2.1.1).

To perform label-assisted clustering, we first generated boolean phonetic feature
vectors from the label data aligned to the MFCC feature vectors - as described in
section 2.2.4 discussing LDA prepossessing.

For the phone-assisted clustering, this was done by generating a 45-element vector for
each frame where each vector element corresponds to one of the 45 English phones
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Figure 5.8: Cluster unit selection with clustering based on MFCCs
augmented with labels, using different cluster counts. Lower is better,
error bars indicate 95% confidence interval.

used for labeling in this work. The vector entries were set to 1 if the frame was
labeled as the corresponding phone and to 0 otherwise. For phonetic-feature-assisted
clustering, similar vectors - this time of length 78 - were generated, where each vector
element corresponds to one phonetic feature and is set to 1 if the phone the frame is
labeled as is marked as exhibiting that feature and 0 if not.

For evaluation, we performed clustering on the concatenation of the MFCC feature
vectors contained in the base units (as before, in audio-only clustering) and the
aforementioned boolean vectors indicating each frames phone or each frames phones
phonetic features, still based on the k-means algorithm using the euclidean distance.
The results of using units clustered in this way in unit selection, compared to the best
combined-clustering and best audio-only clustering systems, can be seen in figure
5.8.

The phonetic-feature augmented clustering achieves a performance similar to that of
the best previous systems, while the phone augmented clustering does slightly worse.
This could be due to the fact that, as the label information is already used in the
LDA pre-processing, using that very same information to try and further improve
the selection process is not beneficial.

5.3.2 Target Cost Functions
[Zah14] found that the euclidean distance is not a good target cost function to use
in unit selection based EMG-to-speech conversion. They instead found that, out of
the target cost functions evaluated (euclidean distance, cosine distance), the cosine
distance provided the best results.

In this work, we evaluated two additional target cost functions, evaluating them on
the audio-only clustering system: The maximum-norm distance, and the sum-norm
distance. Figure 5.9 illustrates these two in comparison to the euclidean norm and
the cosine distance. To calculate the target cost for a single codebook unit given a
test unit, these distances are evaluated between all pairs of parallel EMG frames of
the test- and codebook unit being compared (compare figure 3.2 earlier in this work)
and then averaged.
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Note that this evaluation concerns the target cost only: The clustering method
remains unchanged.
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Figure 5.9: Different distance functions evaluated for the target cost,
illustrated as lines of equal distance to the vector [0.5, 0.5].

The maximum norm distance L∞(a, b) between two N -dimensional vectors a and b
is obtained by calculating the difference of the two vectors being compared, then
finding the absolutely largest element of the difference:

L∞(a, b) = max{|a1 − b1|, ..., |aN − bN |} (5.2)

The Manhattan distance L1(a, b) of two vectors a and b of dimensionality N is
obtained by taking the difference of the two vectors and summing their elements
absolute values:

L1(a, b) =
N∑

n=1
|an − bn| (5.3)

We compared these two to the best performing target cost from [Zah14], the cosine
similarity cs(a, b), defined based on the angle between the two vectors a and b being
compared:

cs(a, b) = 1− a · b
|a| ∗ |b|

(5.4)

The result of our evaluation of these functions as the target cost in unit selection
with audio-only clustering can be seen in figure 5.10. Clearly, the maximum norm
distance performs adequately, but not better than the cosine similarity. The sum
norm distance does not produce good results.

It being clear that none of the new evaluated functions outperforms the cosine
similarity, we decided to use the cosine similarity as the target cost in our final
evaluation.

5.3.3 In-Cluster Selection
The averaging of units which is necessary to create the cluster units used in clustering-
based unit selection has implications for output audio clarity, which can be addressed
by using in-cluster selection, as described in section 4.3.3. The result of an evaluation
series using in-cluster selection, with audio-only clustering and emg-only clustering,
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Figure 5.10: Cluster unit selection with different target cost functions -
the cosing distance as the best performing target cost from [ZJWS14] as
well as the two new functions L∞ and L1 - and cluster counts. Lower is
better, error bars indicate 95% confidence interval.
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Figure 5.11: Cluster unit selection with in-cluster selection, using different
cluster counts. Lower is better, error bars indicate 95% confidence
interval.

cosine similarity for the target cost and euclidean distance for the concatenation
cost, can be seen in figure 5.11.

The MCD score of the in-cluster selection is worse than that of the basic audio-only
cluster unit selection in either case (this difference is statistically significant at a
significance threshold of p=0.05).

As expected, the EMG-only clustering, which did not perform well at all in basic
clustering unit selection, provides output of a comparable quality to that of audio-only
in-cluster unit selection, however, the audio-only system still has a slight edge.

5.4 Final evaluation
Having evaluated several different sets of parameters and systems for our clustering-
based unit selection system, this section will provide a final evaluation of the new
system on the evaluation set of our data corpus.
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Figure 5.12: Frame-Based MCD for cluster unit selection on the evalua-
tion set, with different cluster counts. Lower is better, error bars indicate
95% confidence interval.

We decided to perform this evaluation on the audio-only cluster unit selection system,
using the cosine similarity as the target cost, and evaluating both basic cluster unit
selection as well as in-cluster selection.

While the following charts will, for reference, show an entire series of evaluated
cluster counts, the results reported, and the subjective evaluation, will always be
using 6000 clusters, the amount of clusters determined to give the best MCD scores
on the development set.

5.4.1 Objective Evaluation

Qualitative improvements

For the objective evaluation, this work uses, as in the previous section, the MCD
score, this time computed on the results of performing unit selection EMG-to-speech
conversion on the evaluation set data.

The results of the evaluation for the basic cluster unit selection can be seen in figure
5.12 (Frame-based MCD) and, for reference, 5.13 (DTW-MCD).

It can be seen that, though there are large differences between sessions, the new
cluster unit selection system achieves a significant improvement in MCD score over
the baseline system for every session (at a significance threshold of p=0.05, verified
using a two-tailed paired t-test).

The cluster count selected for the evaluation - 6000 clusters - does provide good results
for all sessions, and for the session whose size is similar to that of the development set,
seems close to optimal. For the larger sessions, it appears that using more clusters
can still improve results - this may have to be investigated further in future work.

One thing which stands out is the mean MCD score of session Spk3-Array-Large:
Despite the large amount of data, which should help to improve the quality of the
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Figure 5.13: DTW-MCD for cluster unit selection on the evaluation set,
with different cluster counts. Lower is better, error bars indicate 95%
confidence interval.

unit selection output, the MCD is a lot worse than the other sessions for both the
baseline and the cluster unit selection system. This could be due within-session
variance as skin condition and speaker behaviour during speech production change
during the very long recording session, as well as the larger amount of experience of
speakers 1 and 2 with the recording system. The cluster unit selection approach is
not able to fully compensate for this, however, it still performs much better than the
baseline system.

The results for the unit selection with in-cluster selection, shown in figure 5.15 and
figure 5.16, paint a similar picture: The baseline system is outperformed by the new
system by a significant margin for every session evaluated (again at a significance
threshold of p=0.05, verified using a two-tailed paired t-test). In addition, comparing
the MCD scores of the basic cluster unit selection and unit selection with in-cluster
selection shows that the basic approach consistently yields a significantly better
MCD score for every session, even though the in-cluster selection system does seem
to achieve the goal of creating less time blurring (illustrated for an example utterance
in figure 5.14).

A noticeable difference between the basic unit selection and the in-cluster unit

Reference Cluster Unit Selection In-Cluster Selection

Figure 5.14: Spectrograms of a snippet of audio from utterance Spk3-
Array-Large-Utt4, showing the blurring effect of cluster unit selection,
and the less blurry results obtained with in-cluster selection.
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Figure 5.15: Frame-Based MCD for cluster unit selection with in-cluster
selection on the evaluation set, with different cluster counts. Lower is
better, error bars indicate 95% confidence interval.

selection approaches concerning cluster count seems to be that while for the cluster
unit selection, 6000 clusters seems to be a good value, the same is not true for
in-cluster selection: Here, for the majority of sessions, the MCD score has not
stopped falling at the end of the evaluation run. It might be possible to improve
the performance of cluster unit selection with in-cluster selection by using a larger
amount of clusters, especially for larger sessions.
Overall, basic cluster unit selection achieves an improvement of the mean frame
based MCD score (over all sessions) from 6.26 to 5.44, a 13.11 percent relative
decrease (absolute improvement of the frame based MCD score of 0.82). In-cluster
selection manages to improve the mean frame-based MCD by 7.27 percent relative
(an absolute improvement of 0.46), down to 5.8.
The mean MCD scores for each session (for the baseline system, the 6000 unit cluster
unit selection system and the 6000 unit in-cluster selection system) can be found in
table 5.3 in the next section of this work.
The largest improvements were achieved for the single-electrodes sessions (with a
14.92 percent relative improvement for session Spk2-Single in the basic cluster unit
selection case, from 6.54 down to 5.65), while the large sessions benefit the least
(with only a 10.27 relative improvement on session Spk1-Array-Large, from 5.55 to
4.98). This relatively smaller improvement could be due to, as previously mentioned
cluster count differences.
The situation is the same for in-cluster selection, with a maximum relative improve-
ment of 9.52 percent for session Spk2-Single (6.54 down to 6.02) and a minimum
improvement of 4.14 percent relative on session Spk1-Array-Large (5.55 down to
5.32).

Quantitative improvements

While the quality improvements provided by cluster unit selection are already
significant, the quantitative improvements are even larger. Unit selection needs to



5.4. Final evaluation 41

baseline500 1000 2000 4000 6000 8000 10000 12000 14000 20000
4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

Spk1-Single Spk2-Single Spk1-Array
Spk2-Array Spk1-Array-Large Spk3-Array-Large

M
C
D

MFCC Clusters

Figure 5.16: DTW-MCD for cluster unit with in-cluster selection selection
on the evaluation set, with different cluster counts. Lower is better, error
bars indicate 95% confidence interval.

compute, at the very least, the target cost for every pair of test unit and codebook
unit. This makes converting with a large unit codebook computationally expensive,
which is a problem when real time performance is desired.
Cluster unit selection can help here: As it creates a smaller codebook of cluster
units (compare table 5.2 for unit counts of the baseline system), the time taken
for conversion is also greatly reduced. Even with in-cluster selection, the expensive
Viterbi in-cluster concatenation step is restricted to relatively few units, found during
the less expensive first phase of the selection process.
The result of a quantitative evaluation of cluster-based unit selection methods for
EMG-to-speech conversion can be found in table 5.3 (All times were obtained on an
Intel Core i7-3770 CPU running at 3.40GHz).

Session Training set length (mm:ss) Baseline unit count
Spk1-Single 27:10 139542
Spk2-Single 26:54 137909
Spk1-Array 31:01 159987
Spk2-Array 25:44 119949
Spk1-Array-Large 76:44 403047
Spk3-Array-Large 123:04 634031

Table 5.2: Length of the training set for all sessions and the number of
units in the baseline unit codebook created from that training set.

The improvements are drastic: While the baseline system takes 123.6 times realtime
to process the evaluation set, basic cluster unit selection manages to do the same
in a much better 2.33 times realtime, an improvement of 98 percent. For in-cluster
selection, where, like in the baseline system (and unlike in the basic cluster unit
selection system) the time taken for conversion depends in part on the training set
size, the time taken for conversion is larger - 19.5 times realtime - but still a lot
better than the time taken by the baseline system (a 84 percent improvement).
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Session MCD Score Time taken for conversion (mm:ss)
Baseline Clustering In-cluster Baseline Clustering In-cluster

Spk1-Single 6.54 5.65 6.02 72:33 2:25 14:56
Spk2-Single 6.30 5.36 5.70 44:02 2:06 12:30
Spk1-Array 5.96 5.09 5.48 154:39 3:47 17:16
Spk2-Array 6.35 5.57 5.88 50:31 2:41 9:31
Spk1-Array-Large 5.55 4.98 5.32 150:50 2:11 28:14
Spk3-Array-Large 6.85 5.96 6.40 241:57 1:58 28:29

Table 5.3: Mean evaluation set frame-based MCD scores and computation
times for the baseline unit selection system as well as cluster unit selection
without and with in-cluster selection, using 6000 cluster units.

Figure 5.17: The listening test system setup used to perform subjective
comparisons of our systems.

5.4.2 Subjective Evaluation
The MCD score is correlated with human perception of speech quality [Kub93]. It
is, however, not a perfect measure. For this reason, we performed a set of subjective
evaluations, where humans were asked to listen to the outputs of our systems and
compare them. This section will describe these subjective evaluation tests.

Test Setup

All listening tests were performed as A/B comparison tests with reference: Each
participant was given the ability to listen to the output of both systems being
compared, along with reference audio output, and asked to decide which output
they considered to be closer to the reference. A neutral option - “no preference” was
provided in case a participant did not find any of the outputs to be substantially
better than the other. A screenshot of the web-based system used to perform the
listening tests - the BeaqleJS system [KZ14] - can be found in figure 5.17.

Utterances for the tests were selected at random from the evaluation set, selection
4 utterances from each session for a total of 24 utterances. In each test run, the
utterances were presented in a randomized order and with the systems randomly
being assigned to the “Left” and “Right” sides, to avoid any potential bias. As the
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goal of this work was to evaluate the MFCC conversion performance only, both
systems outputs were synthesized using F0 trajectories extracted from the reference
audio.

Basic Cluster Unit Selection versus In-Cluster Selection

In our first listening test, we compared the output of two cluster unit selection
systems to decide which system to compare with the baseline system: The basic
cluster unit selection system using 6000 units and the in-cluster selection system
using 6000 units. The result of this evaluation, in which 6 people participated (For a
total of 144 listened utterances), can be found in figure 5.18.
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Figure 5.18: Results of comparative listening test with cluster unit
selection not using in-cluster selection versus cluster unit selection using
in-cluster selection.

The results are close, and there is (as expected) no clear preference for any system
over the other for many utterances, there was a trend towards the in-cluster selection
system (contradicting the MCD score results): The in-cluster system was preferred
for 37.50% of all listened utterances, while the basic cluster unit selection system was
the preferred system for only 29.86% (with the remaining 32.64% of listens resulting
in no preference for either system). We decided, for this reason, to perform the final
subjective evaluation comparison against the baseline system using the in-cluster
selection system.

Baseline system versus In-Cluster Selection

While the results were very close for the initial comparison of the two cluster-based
unit selection systems, this is not the case for the evaluation comparing the baseline
system with the in-cluster selection system. A total of 11 people participated in this
listening test, giving a total count of 264 listened utterances. The results can be seen
in figure 5.19.

It is clear that, in the subjective evaluation, the new cluster-based system is superior
by a large margin: It was the preferred system for two-thirds of listened utterances,
and the preferred system for 21 of 24 utterances (with the improvement being so
strong for two utterances that every participant preferred the cluster-based system
over the baseline).
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Out of the remaining three utterances, participants showed no clear preference
for two. The baseline system was the preferred system for only for one utterance,
Spk2-Single-Utt4. It is unclear what caused this outlier, and further investigation
may reveal avenues enabling further performance improvements for cluster-based
EMG-to-speech conversion.

In total, the cluster-based system was preferred for 66.67% of listened utterances,
the baseline system in only 12.12%, with participants not preferring either listened
utterance in 21.21%.
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Figure 5.19: Results of comparative listening test with basic unit selection
versus cluster unit selection with in-cluster selection.
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This work introduced a novel k-means clustering based method for improving unit
selection based EMG-to-speech conversion, attempting to improve the unit codebook
by generating more prototypical units. It then introduced a variation of this technique
that tries to compensate for some of its problems.

Several sets of parameters for this method were evaluated on a development data
set before settling on one to perform a final round of evaluations, objective and
subjective, on an evaluation set.

The original method, cluster unit selection, resulted in an average improvement in
frame-based MCD score of 13.11%. The variant, in-cluster selection, only achieved
an improvement 7.27%, but was the preferred system in a subjective comparison of
the two new systems.

In the subjective comparison of the baseline unit selection system from [ZJWS14] to
the in-cluster selection system, the output of the new system was overwhelmingly
preferred by participants, with the new system being the preferred system for a full
two thirds of listened utterances, compared to the old system being only preferred in
only 12.12% of all listened utterances.

6.1 Future Work
While the output of the new cluster-based unit selection EMG-to-speech conversion is
a significant improvement over the previous conversion systems, the output remains
unsatisfactory. Several issues need to be addressed before such a system can approach
practicality.

For silent speech interfaces in general, one large issue not addressed in this work is
between-session and between-speaker variance. Currently, most systems can only
work session-dependently, requiring time-consuming enrolment every time electrodes
are reattached. For practical use, this is not acceptable - a session-independent or at
least session-adaptive system will have to be designed.

Such a system will also have to output good F0 trajectories, a task not considered
in this work. [ZJWS14] already use unit selection to create such trajectories, and
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clustering-based methods or methods using very wide units might be able to improve
upon the results presented there.

Another large issue is the operation on silent speech. This work only concerned itself
with operating on EMG data recorded during audible speech. A transfer of this
system to silently recorded EMG data remains challenging.

Within cluster-based unit selection, several things remain to be investigated, as well.
One is how cluster count relates to the amount of training data available: Right
now, the cluster count is fixed according to validation on a development set. A
good automated procedure to find an optimal cluster count, or potentially alternate
clustering algorithms, might improve performance especially for larger sessions.

The issue of selecting the best unit out of all those available also remains unsolved:
Oracle experiments have shown that MCD scores as low as 3 should be possible even
with basic unit selection, if only the right unit was selected every time. In this work,
some additional target cost functions were evaluated, but a good procedure for a
statistical optimization of the selection process through a learned target cost remains
to be found.

6.2 Closing Remarks
The performance of silent speech interfaces based on the EMG modality has slowly,
but steadily been improving for the last years. While no system is, as of yet, ready
for use even in a clinical setting, this goal is beginning to look more achievable, and
even though there is much work still to be done, it is our hope that the findings
presented in this hope have contributed a small amount towards achieving it.
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LDA, see Linear Discriminant Analysis
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Production, 3
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Synchronization, 29
Synthesis, 18
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Unit, 15
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Clustering, 23
Codebook, see Codebook
Count, 41
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Selection, see Unit Selection
Test Unit, 16

Unit Selection, 16
Cost Functions, 35
Greedy, 17
In-Cluster Selection, 36
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Viterbi, see Viterbi Algorithm
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