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Abstract—This paper presents our first results using Deep
Neural Networks for surface electromyographic (EMG) speech
synthesis. The proposed approach enables a direct mapping from
EMG signals captured from the articulatory muscle movements to
the acoustic speech signal. Features are processed from multiple
EMG channels and are fed into a feed forward neural network to
achieve a mapping to the target acoustic speech output. We show
that this approach is feasible to generate speech output from the
input EMG signal and compare the results to a prior mapping
technique based on Gaussian mixture models. The comparison
is conducted via objective Mel-Cepstral distortion scores and
subjective listening test evaluations. It shows that the proposed
Deep Neural Network approach gives substantial improvements
for both evaluation criteria.

I. INTRODUCTION

Over the last years Silent Speech Interfaces [1] - systems
that enable speech communication when an acoustic signal
is unavailable - have gathered intense public interest, since
they offer solutions to problems faced by today’s speech-driven
technologies, in particular:

1) degradation of performance in the presence of noise,
2) disturbance of bystanders,
3) compromise of privacy and confidential information,
4) exclusion of speech-disabled persons from common

speech processing systems.

Several kinds of techniques have been proposed to alleviate
these problems. Our method of processing speech signals
relies on surface electromyography (EMG) [2], where the
activation potentials of the facial articulatory muscles are
recorded with surface electrodes in order to retrace speech.
Since this approach is solely based on the articulatory muscle
activity, it also works when no audible speech is produced,
i.e. the words are only mouthed. One target group for this
type of interface are people, who have suffered from the loss
of a phonation function, like patients from laryngectomy or
tracheotomy. Achieving natural speech communication would
be a great help to improve medical care and to retain social
interaction.

We believe that paralinguistic information – like speaker
identity, speaker’s mood, etc. – is crucial for a natural commu-
nication and for an accepted usage of silent speech technolo-
gies. Previous work (e.g. [2], [3]) successfully implemented
speech recognition systems that recognize the EMG-based
input and give a text output, that can be synthesized using text-
to-speech systems, but that ignores the natural paralinguistic
information. We therefore propose a direct conversion from

EMG to the acoustic domain [4].We expect this direct feature
transformation technique to have the advantage of retaining
the paralinguistic information, compared to an EMG-based
speech recognition system. This approach, enabling a straight
transformation of features, also benefits from the fact that there
exist no vocabulary restrictions and no word recognition errors
- a drawback which can be observed on speech recognition
systems.

We proposed a first direct feature transformation from
EMG to acoustic speech in [4]. A frame-based statistical
mapping technique with Gaussian mixture models [5] was
used, which was originally introduced in the Voice Conver-
sion domain, where the voice parameters of one speaker are
transformed to a different target voice. The input EMG features
were transformed to acoustic features, while the fundamental
frequency (F0) was extracted from the simultaneously recorded
acoustic speech signal. In previous work [6] we complemented
this approach by generating F0 from the EMG signal, but
faced issues with the naturalness and prosody of the generated
output. We also proposed a direct mapping technique [7] which
is based on a Unit Selection approach and obtained promis-
ing results especially in terms of naturalness. Other research
groups [8] used an EMG-based neural network approach, but
for phone classification instead of regression. An articulatory-
to-acoustic mapping approach based on Deep Neural Networks
(DNN) was introduced by [9]. They trained on electromagnetic
articulography (EMA) data which was recorded synchronously
with the articulated speech sounds.

In this paper we investigate a direct EMG-to-speech map-
ping based on Deep Neural Networks and compare this ap-
proach to our previous Gaussian Mapping technique [10]. In
the training stage we estimate the DNN parameters using
information from corresponding EMG and speech data, col-
lected during simultaneous data recordings. In the conversion
stage a non-linear mapping is used to convert arbitrary facial
EMG signals to acoustic speech features, namely the Mel Fre-
quency Cepstral Coefficients (MFCCs) plus the fundamental
frequency (F0). These features are used to obtain the acoustic
output using the Mel Log Spectrum Approximation (MLSA)
filter method [11]. Figure 1 illustrates our mapping process.

The remainder of this paper is organized as follows: Sec. II
presents the setup and describes the data corpus we used,
followed by Sec. III which gives details about the compared
feature mapping approaches. In Sec. IV, we present our
experimental setup, followed by the results and evaluation
in Sec. V. Sec. VI concludes the paper, outlines remaining
problems and future work.
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Fig. 1. Process of mapping from electromyographic input to speech output.

II. RECORDING SETUP AND DATA

For our proposed Deep Neural Network based mapping
approach we selected recording sessions from our previous
work ([10], [12]) which contain more than 500 utterances
of EMG signals recorded during audible speech. Since the
training of DNNs requires a relatively large amount of data,
we additionally use two recently recorded sessions with 1103
and 1978 utterances. In total the corpus contains six recording
sessions, with data from two male speakers and one female
speaker. Since the EMG signal shows high inter-individual
differences, we only use it session dependently.

Fig. 2. left: Single electrode positioning, black numbers indicate unipolar
derivation with reference electrodes behind the mastoid bone (except channel
1), white numbers indicate bipolar derivation. right: Electrode array position-
ing, one large array is positioned on the cheek, one small array under the
chin. See text for details.

For the recording of the EMG signals, we used two
different types of setups: a single electrode setup and a novel

electrode array setup. For the single electrode setup, we used
a computer-controlled 6-channel EMG data acquisition system
(Varioport, Becker-Meditec, Germany). We captured signals
from 1) the levator anguli oris, 2) the zygomaticus major,
3) the platysma, 4) the anterior belly of the digastric and 5) the
tongue, see Fig. 2 (left) for the electrode positioning. All EMG
signals were sampled at 600 Hz and filtered with an analog
1 Hz high-pass filter. The electrode positioning which yielded
optimal results was adopted from [13].

The electrode array acquisition device (EMG-USB2, OT
Bioelettronica, Italy) recorded the EMG signals using a large
electrode grid of four rows of eight electrodes each with 10 mm
inter-electrode distance (IED) and a second smaller array with
one row of eight electrodes with 5 mm IED. As illustrated in
Fig. 2 (right) the large array was placed on the subject’s cheek
- similar to the positioning of a cell phone - while the smaller
one was positioned under the chin to ensure the recording of
the tongue. The array signals were sampled at 2048 Hz, using
a bipolar derivation, where the activation differences between
two adjacent channels in a row are calculated. We therefore
obtain a total of 35 signal channels out of the 4 × 8 cheek
electrodes and the 8 chin electrodes [12].

In addition to the EMG signal, we simultaneously recorded
the acoustic speech signal with a standard close-talking mi-
crophone at a sampling rate of 16 kHz. The audio signal is
synchronized to the EMG signal using an additional analog
marker channel. This marker system consists of a signal splitter
with one analogue input, which is connected to a parallel port
of the recording computer, and two outputs, one connected to
the input of the EMG amplifier, and the other one connected
to the second (stereo) channel input of the sound input device.
This is a prerequisite for getting corresponding EMG and
acoustic speech data.

The recorded text corpus is based on [14] and consists of
phonetically balanced English sentences which originated from
the broadcast news domain. For the larger sessions, further
text data from the Arctic corpus [15] was added. The longest
session with more than 2 hours of recorded EMG and speech
data additionally used utterances from the TIMIT corpus [16].
Each session was split into a train and eval set. The latter
contains at least 10 different test sentences (plus repetitions),
which are kept fixed across all sessions. We additionally
defined a development (dev) set from session Spk1-Array,
which is used for the parameter optimization. For recording
the data, the speaker read all prompted utterances in normal,
audible speech in randomized order. This was supervised by
a recording assistant to assure proper pronunciation and to
guarantee a stable signal quality.

Table I lists the durations of the six recorded sessions and
the number of utterances per session.

III. FEATURE MAPPING APPROACHES

We implement a direct EMG-to-speech feature transforma-
tion, we simply refer to as mapping. In the training process
we estimate the model parameters using information from the
simultaneously recorded EMG and speech data. Thus, in the
final conversion stage the acoustic speech output is created
from the unseen input EMG data using the estimated model.
This section introduces the proposed mapping techniques.
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TABLE I. Data corpus information for the recorded utterances,
including speaker/session breakdown.

Session Accumulated data length,
in (mm:ss) # of train/eval utterances

Train Eval Dev Train Eval Dev
Spk1-Single 27:10 01:19 500 20
Spk2-Single 26:54 00:49 496 13
Spk1-Array 31:01 00:47 01:59 500 10 30
Spk2-Array 25:44 01:10 500 20
Spk1-Array-Large 76:44 00:48 1093 10
Spk3-Array-Large 123:04 00:45 1968 10
Total 310:37 05:38 01:59 5057 83 30

A. Gaussian Mapping

Our previous feature mapping approach [10] is based on
a transformation via Gaussian mixture models (GMM), a
technique that is successfully used in the Voice Conversion
domain and also in similar speech feature transformations [5].
Like all feature mapping approaches described in this paper,
this Gaussian Mapping approach consists of two parts:

1) a training stage,
2) a conversion stage on unseen data.

For training we use EMG and acoustic data that was simul-
taneously recorded (see section II). The training data consists
of 32-dimensional EMG feature vectors as source data and
25-dimensional Mel-Cepstral Coefficients as target data. See
Sec. IV-B and IV-A for details on the used EMG and acoustic
features.

For the conversion stage we define a static source and target
feature vector at frame t as xt = [xt(1), · · · , xt(dx)]> and
yt = [yt(1), · · · , yt(dy)]>, respectively. dx and dy denote
the dimension of xt and yt, respectively. After preparing
the training data, a GMM is trained to describe the joint
probability density of the source and the target feature vectors.
The conversion stage is based on a minimum mean-square
error criterion: ŷt =

∑M
m=1 P (m|x̂t, λ)E

(Y )
m,t, where ŷt is the

estimated target feature vector at frame t from input feature
vector x̂t. m denotes the mixture component index, M denotes
the total number of the mixture components, λ represents the
parameter set of the GMM, which consists of weights, mean
vectors, and full covariance matrices for individual mixture
components.

B. Neural Network Mapping

In this work, we propose to use a deep neural network
(DNN) which is implemented using the Computational Net-
work Toolkit [17] to perform the mapping from EMG features
to audible speech. This application reflects a regression prob-
lem instead of the classification usually done via DNNs. We
use a five layer feed forward neural network with bottleneck
layer topology to obtain the mapping function between the
source and the target vectors. Standard backpropagation learn-
ing is used to adjust the weighting parameters of the DNN so as
to minimize ε, i.e., the mean squared error between the desired
and the actual output values. We performed experiments with
different combinations of epochs, mini-batch sizes and learning
rates. Parameter results are reported in Sec. V.

Figure 3 shows the architecture of the employed five-layer
neural network which we use for mapping the electromyo-
graphic features to the acoustic space of audible speech.

Fig. 3. Structure of the neural network used to convert electromyographic
features to target Mel Frequency Cepstral Coefficients.

The neural network is trained to map the EMG features
to the target features of audible speech, i.e., if G(xt) denotes
the mapping of xt, then the error of the mapping is given by
ε =

∑
t ‖yt −G(xt)‖2. G(xt) is defined as

G(xt) =g̃(w
(4), b(4),

g(w(3), b(3),

g(w(2), b(2),

g(w(1), b(1),xt))))

where
g̃(w, b,x) = w ∗ x+ b

and
g(w, b,x) = ReL(g̃(w, b,x))

Here, w(n) and b(n) represent the weight and bias matrices
of the hidden and output layers and ReL denotes the rectified
linear activation function ReL(x) = max(0, x). We use
the EMG feature vector input described in detail in section
IV-B, followed by three hidden layers g with different sizes
concluded by a final regression layer g̃ having as many nodes
as the number of acoustic output parameters, resulting in an
“hourglass” configuration with a c2 = 32 node bottleneck
in the center surrounded by a c1 = 2500 node computation
layer between input and bottleneck and a c3 = 1024 node
computation layer between bottleneck and output. We used
this three-hidden-layer DNN structure based on our previous
work on the conversion of whispered to audible speech [18].

Once the training process has converged, we get a set of
weight and bias matrices which represent the mapping function
from source EMG features to target acoustic speech features.
These matrices can be used in the conversion stage to transform
an EMG feature vector to a feature vector of the audible
speech. To avoid bias towards numerically larger EMG- or
audio features, the signal is normalized to zero mean and unit
variance for training.

IV. EXPERIMENT SETUP

A. Acoustic features

In the acoustic signal domain, an excitation-filter model of
speech is considered. 25 Mel Frequency Cepstral Coefficients
(MFCCs) [19] are extracted as filter parameters and fundamen-
tal frequency (F0) estimates are derived as excitation features
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for every 10 ms in 32 ms frame. These features represent
the acoustic speech information and will be used to obtain
the acoustic output: The Mel Log Spectrum Approximation
(MLSA) filter method [11] takes the generated F0 and MFCCs
as input and generates the final output speech waveform.

B. Electromyographic features

We evaluate a feature which is based on a composition of
time-domain features [3]. For a given feature f , f̄ is its frame-
based time-domain mean. Pf is the corresponding frame-based
power, and zf is the frame-based zero-crossing rate. S(f , n) is
the stacking of adjacent frames of the feature f in the size of
2n + 1 (−n to n) frames, which is used in order to account
for time-context information.

For an EMG signal with normalized mean x[n], the nine-
point double-averaged signal w[n] is defined as

w[n] =
1

9

4∑
k=−4

v[n+ k], where v[n] =
1

9

4∑
k=−4

x[n+ k].

The high-frequency signal is p[n] = x[n] − w[n], and the
rectified high-frequency signal is r[n] = |p[n]|. The final
feature TD15 is defined as follows:

TD15 = S(f2, 15),where f2 = [w̄,Pw,Pr, zp, r̄].

Frame size and frame shift were set to 32 ms and 10 ms
respectively. This TD15 feature is computed from each of the
EMG channels, then a fused vector is formed by stacking all
channel vectors. For the DNN mapping, we use this TD15
feature as the input to our mapping system. To compare
our implicit dimensionality reduction approach with a more
explicit feature reduction, we also apply Linear Discriminant
Analysis (LDA) to reduce the dimensionality of the TD15 data
to 32, as in our prior work [10], and perform training and
mapping on the low-dimensional post-LDA EMG data.

Prior work ([20], [21]) indicates an anticipatory effect of
the EMG signals compared to the simultaneously recorded
speech signals. We model this anticipatory effect by adding a
time delay of 50ms to the EMG signals when the EMG signal
is aligned to the audible speech data. Every EMG channel is
delayed by the same amount of time.

Note that the electrode array recordings provide 35 chan-
nels instead of the six EMG channels given by the single
electrodes. For two of the array sessions, we visually inspected
the EMG signals and discarded channels that we deemed too
noisy, resulting in reduced channel sets. Further details about
the positioning and processing of the electrode array signals
can be found in [12].

C. Experimental results

For the objective evaluation of the proposed EMG-to-
speech conversion we use the Mel-Cepstral Distortion (MCD)
[22]. The MCD is a scaled Euclidean distance between the
spectral features of the target audible speech and the spectral
features (i.e. MFCCs) of the converted EMG speech in decibel.

MCD = 10/ ln 10

√√√√2 ·
25∑
k=2

(mcest[k]−mctar[k])2

mcest[k] and mctar[k] denote the k-th Mel-Cepstral coef-
ficient of target and estimated data. Smaller numbers imply
better results. Also note that the first coefficient was not
included, since it represents the power of the acoustic signal.

First, the MCD is computed for each frame, then it is aver-
aged over all frames of an utterance. Note that the source EMG
signal and the target audio signal are recorded simultaneously,
hence the converted audio signal and the target audio signal are
automatically aligned as well and we do not need to perform
any alignment here.

The subjective estimation is evaluated using AB prefer-
ence listening tests comparing the Gaussian Mapping output
(see Sec. III-A) to the proposed DNN-converted speech (see
Sec. III-B). Each participating subject listens to the original
target audio file and compares the mapping outputs A and B
to decide which one is preferred. Each utterance is presented
in randomized order. If no preference can be perceived, a third
neutral option is available, so the listening subject is not forced
to make a decision.

V. DNN MAPPING

A. Parameter optimization

We initially chose the three-hidden-layer structure of the
DNN based on our experience with converting whispered to
audible speech, as reported in [18]. We increase the size of the
hidden layers to accommodate the higher input dimensionality
of our EMG TD15 feature data. The bottleneck structure is
chosen to mirror the feature-extraction-followed-by-mapping
structure of the previously used LDA-GMM approach - with-
out, however, requiring LDA training based on label informa-
tion. Layer sizes and activation functions are then empirically
tuned on a development set from session Spk1-Array, which
was held out from training, to optimize performance. The
target function used for training is the square error between
normalized network-estimated Mel-Cepstral coefficients and
reference audio data.

To train the network, we use stochastic gradient descent
training, with a momentum of 0.9 and a learning rate of 0.01,
initial network parameters being chosen uniformly at random
from range [−0.5, 0.5]. Holding these things constant, we
search for an optimal training epoch count on a development
set held out from training for this purpose, arriving at 20
epochs as a setting producing good results for all sessions.

Figure 4 gives an example of square error values obtained
during training with a different number of epochs. It can be
seen that while the training error continues to decrease, the
error on the development set starts rising past 20 epochs of
training as overtraining sets in. Consequently we stopped the
training of our DNN-based mapping after 20 epochs.

B. Input EMG-Feature Comparison

Our previous mapping approaches use Linear Discriminant
Analysis (LDA) to reduce the input TD15 feature set to
a 32-dimensional vector. The LDA matrix is computed on
the training data of each session divided into classes based
on the 45 English phones, plus one silence phone. For the
computation, each EMG feature vector needs to be assigned
to one phone, implying that phone-based label information
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Fig. 4. Average square error per sample between DNN output and normalized
reference audio for Spk1-Array when evaluating the network after training with
varying epoch count, calculated on the training set and the development set.

is needed. This label information is obtained by performing
forced alignment of phone labels obtained from the known
utterance text to the audio recordings. Thus a pre-trained
speech recognition system is used. This means that performing
training on plain parallel recordings of EMG and audio data
with no known utterance text, or training on data where the
text is known but no speech recognition system is available, is
impossible. Additionally, since the automatic alignment is not
necessarily correct for every frame, it introduces an additional
error source. Thus, it would be preferable to eliminate the
dependence on the LDA.

Fig. 5. Mel-Cepstral distortions of DNN-based EMG-to-speech mapping
output: 32-dimensional EMG input versus high-dimensional TD15 EMG
feature.

We compare two different DNN-based mappings, whose
parameters where optimized individually on the development
set. The first approach uses the post-LDA 32-dimensional input
EMG features, the second one the high-dimensional TD15 fea-
tures. Although the MCD scores differ only slightly (average
MCD of 5.79 versus 5.91), the TD15 feature based mapping
manages to consistently outperform the LDA approach in our
experiments with a relative improvement of 2.05%, implying
that no LDA computation is necessary for proper mapping
results. Figure 5 gives the MCDs for each speaker/session of
the mapping output.

C. Comparison to Gaussian Mapping

We compare our DNN-based mapping results to our previ-
ous work [10], where a frame-based EMG-to-speech mapping
is used and some of the data used in this paper (sessions
Spk1-Single and Spk2-Single) is shared (see Section III-A for
details). For our Gaussian Mapping, we apply the post-LDA
32-dimensional EMG feature and use 128 Gaussian mixtures
for the mapping to the final 25-dimensional MFCCs.

Fig. 6. Exemplary spectrograms of DNN-based and Gaussian Mapping based
EMG-to-speech mapping output plus the original target audio file (top to
bottom) of the utterance: “He succeeded in doing that with a vengeance.”

Figure 6 shows spectrograms of the converted output from
the Gaussian mapping, as well as from the DNN-based feature
transformation and the original target audio file from the
exemplary test utterance “He succeeded in doing that with a
vengeance.”, taken from session Spk1-Array-Large. The final
output was synthesized using the MLSA filter, based on the
converted MFCC output and the target F0 information that was
extracted from the parallel audio file. It can be seen that both
conversion approaches show similar results and lack detailed
spectral information reconstruction.

With the six sessions we obtain an average MCD of 5.79
with our DNN approach, compared to an average MCD of
5.94 with the Gaussian Mapping output. This corresponds to a
relative improvement of 2.47%. Figure 7 gives the MCDs for
each speaker/session.

Since objective MCD scores do not perfectly correspond
to human acoustic perception, we perform an subjective AB
preference listening test (adapted from [23]) between converted
speech from DNN-based output and from Gaussian Mapping
output. We also included a third neutral option, when no
preference was perceived. Each participating subject listens to
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Fig. 7. Mel-Cepstral distortions of EMG-to-speech mapping output: DNN
approach versus Gaussian Mapping approach.

Fig. 8. Listening test preferences of the converted output per test ut-
terance: DNN output versus Gaussian Mapping (GM) output versus no
preference (NoPref). S1/S2/S3 = Speaker1/2/3, S/A/A-La = Session with
Single-Electrodes/Array/Array-Large.

the target audio file and compares the two mapping outputs to
decide which one is preferred. We randomly selected three to
four utterances from the test set of each session, resulting in
19 utterance for the listening test and performed the listening
test on 10 subjects. This results in 190 utterances, from which
52.6% of DNN output were preferred and only 11.6% of the
Gaussian Mapping system were preferred. For 35.8% of the
utterances no distinct preference was made.

Figure 8 depicts the single preferences on all 19 listening
test utterances. Obviously most utterances of the DNN output
(blue) are preferred, although for some utterances no clear
preference is made. Even though there is no clear preference
for some utterances (such as S2-A-Utt1), where both systems
outputs are not satisfactory, none obtain absolute majority with
the Gaussian Mapping output.

VI. CONCLUSION

In this paper we investigated Deep Neural Networks (DNN)
to convert surface EMG signals of the articulatory muscles to
audible speech. An objective and subjective comparison to a
Gaussian Mixture model based mapping technique shows a rel-
ative improvement of 2.47% yielding a Mel-Cepstral distortion
(MCD) of 5.79. A listening test also shows significant pref-
erence for the proposed DNN-based mapping system. While
previous approaches used a Linear Discriminant Analysis
(LDA) for input feature dimensionality reduction, our DNN-
based method achieves similar results with high-dimensional

input features. Hence we can omit LDA computation and thus
do not require any further information beyond synchronously
recorded audio- and surface EMG data.

In the future we plan to compare DNNs to Unit Selec-
tion approaches with pre-recorded target speech segments. To
further improve the conversion framework we plan to extend
the amount of data and evaluate different kinds of EMG input
features, since the proposed TD15 feature is highly optimized
for EMG-based speech recognition, rather than for synthesis.
We also plan to use other types of neural networks that model
time-dependent contextual information, e.g. Recurrent Neural
Networks and Long Short Term Memories.
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