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Abstract
This paper reports on our recent advances in using Unit

Selection to directly synthesize speech from facial surface elec-
tromyographic (EMG) signals generated by movement of the
articulatory muscles during speech production.

We achieve a robust Unit Selection mapping by using a more
sophisticated unit codebook. This codebook is generated from a
set of base units using a two stage unit clustering process. The
units are first clustered based on the audio-, and afterwards on
the EMG feature vectors they cover, and a new codebook is
generated using these cluster assignments. We evaluate different
cluster counts for both stages and revisit our evaluation of unit
sizes in light of this clustering approach.

Our final system achieves a significantly better Mel-Cepstral
distortion score than the Unit Selection based EMG-to-Speech
conversion system from our previous work while, due to the re-
duced codebook size, taking less time to perform the conversion.
Index Terms: electromyography, silent speech interface, unit
selection

1. Introduction
Silent Speech Interfaces [1] are systems that process speech, but
do not rely on an audible acoustic signal to do so. Compared to
audio-based speech interfaces, they have various advantages:

1. robustness in the presence of noise,

2. less or no disturbance of bystanders,

3. better protection of privacy and confidential information,

4. usable by speech-disabled persons (e.g. Laryngectomees).

Over the last few years, different modalities for Silent Speech In-
terfaces have been proposed (e.g. [2], [3], [4]). Our method
of processing speech signals relies on surface electromyo-
graphy (EMG) [2], where the activation potentials of the fa-
cial articulatory muscles emitted during speech production are
recorded with surface electrodes. This approach works even
when an acoustic speech signal is not actually present - as it
only relies on the activity of the articulatory muscles, merely
mouthing the words is sufficient.

Our approach is based on the direct conversion of EMG
signals to speech [5], which has several advantages compared
to recognition-based Silent Speech Interfaces (i.e. systems that
recognize and then synthesize speech, as done in e.g. [2], [6]).
In contrast to these, our system does not suffer from vocabulary
restrictions and is able to retain paralinguistic information such
as speaker mood, allowing for a more natural communication.

In [7], we initially proposed a direct mapping based on
Unit Selection [8]. In that paper, the approach is to first build a
codebook of small units containing segments of synchronously
recorded EMG and audio features. To synthesize speech, the

units whose EMG segments best fit the input EMG frames are
selected from this database and an audio signal is reconstructed
from these units audio segments. Figure 1 illustrates this map-
ping process.

Figure 1: Process of mapping from electromyographic input to
speech output.

In this paper, we introduce a method to create a codebook
of units that make the Unit Selection process more robust. We
perform k-means clustering of the units based on the segments of
audio and EMG features contained therein and then build mean
units based on the computed cluster assignments. This reduces
the codebook size from a large number of base units to a low
number of units that are more prototypical than the units they
were created from. Due to that prototypicality, we expect this
approach to allow for a more robust conversion that is not as
sensitive to outliers, a common problem in Unit Selection based
speech synthesis systems.

2. Data corpus information
To compare the clustering approach to our previous work, we
selected the same recording sessions we already used in [7],
which contain more than 500 utterances of EMG signals recorded
during audible speech.

In total the corpus contains four recording sessions, with
data from two male speakers. While the speakers are non-native,
their English pronunciation skills range from good to very good.

For the recording of the EMG signals, we used two different
types of setups: a single electrode setup and a novel electrode
array setup. For the single electrode setup, we used a computer-
controlled 6-channel EMG data acquisition system (Varioport,
Becker-Meditec, Germany). We captured signals from 1) the
levator anguli oris, 2) the zygomaticus major, 3) the platysma,
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Figure 2: left: Single electrode positioning, black numbers in-
dicate unipolar derivation with reference electrodes behind the
mastoid bone (except channel 1), white numbers indicate bipolar
derivation. right: Electrode array positioning, one large array
is positioned on the cheek, one small array under the chin. See
text for details.

4) the anterior belly of the digastric and 5) the tongue, see Fig-
ure 2 (left) for the electrode positioning. All EMG signals were
sampled at 600 Hz and filtered with an analog 1 Hz high-pass
filter. The electrode positioning which yielded optimal results
was adopted from [9].

The electrode array acquisition device (EMG-USB2, OT
Bioelettronica, Italy) recorded the EMG signals using a large
electrode grid of four rows of eight electrodes each with 10 mm
inter-electrode distance (IED) and a second smaller array with
one row of eight electrodes with 5 mm IED. As illustrated in
Figure 2 (right) the large array was placed on the subject’s cheek
- similar to the positioning of a cell phone - while the smaller
one was positioned under the chin to ensure the recording of
the tongue. The array signals were sampled at 2048 Hz, using a
bipolar derivation, where the activation differences between two
adjacent channels in a row are calculated. We therefore obtain a
total of 35 signal channels out of the 4× 8 cheek electrodes and
the 8 chin electrodes [10].

In addition to the EMG signal, we simultaneously recorded
the acoustic speech signal with a standard close-talking micro-
phone at a sampling rate of 16 kHz. The audio signal is syn-
chronized to the EMG signal using an additional analog marker
channel.

The recorded text corpus is based on [11] and consists of
phonetically balanced English sentences which originated from
the broadcast news domain.

Each session was split into a train and eval set. The latter
contains at least 10 different test sentences (plus repetitions),
which are kept fixed across all sessions. For recording the data,
the speaker read all prompted utterances in normal, audible
speech in randomized order. This was supervised by a recording
assistant to assure proper pronunciation and to guarantee a stable
signal quality.

Table 1 lists the durations of the six recorded sessions and
the number of utterances per session.

Since the EMG signal shows high inter-individual differ-
ences, we only build session dependent systems at this point.

3. Unit selection approach
3.1. Basic approach

Our Unit Selection approach attempts to convert EMG signals
to audible speech by building a speech signal from short units

Session Accumulated data
length, in (mm:ss)

# of train/eval utter-
ances

Train Eval Train Eval
Spk1-Single 27:10 01:19 500 20
Spk2-Single 26:54 00:49 496 13
Spk1-Array 31:01 00:47 500 10
Spk2-Array 25:44 01:10 500 20
Total 110:49 04:05 1996 63

Table 1: Data corpus information for the recorded utterances,
including speaker/session breakdown.

of audio selected from a codebook according to the minimum
cosine distance calculated on a set of EMG features covered
by that same unit. To build such a codebook, we use a corpus
of simultaneously recorded EMG and audio data. We extract
sequences of feature frames from these raw signals (For details
about the features used in this work, refer to section 4). We then
extract overlapping windows of a certain length, the unit size wu,
from these sequences. This is done with a unit shift of su = 1
frame (i.e. with an overlap of wu − su frames) to get a large
codebook. One pair of parallel EMG and audio segments make
up a single unit u = [uaudio, uemg] in this codebook.

To perform EMG-to-speech conversion using such a code-
book, the input EMG signal is similarly preprocessed: As above,
a sequence of feature frames is extracted, and these are win-
dowed into units of size wu. This time, the unit shift is chosen
according to experiment results from [7]. Given this input unit
sequence it, units are selected from the unit codebook for each
unit according to the minimal mean cosine distance between the
input unit and codebook unit EMG frames to create an output
unit sequence ot. The mean cosine distance cd between two
units a and b is defined as follows:

cd(a, b) =
1

wu

∑
fa∈aemg,fb∈bemg

fa · fb

‖fa‖ ‖fb‖

The process of selecting units is simply an exhaustive search of
the codebook for the unit with the minimal distance:

ot = argmin
un∈codebook

cd(un, it)

To create an output audio frame sequence from this output unit
sequence, the audio features otaudio of overlapping frames of
units from ot are averaged to create a final output audio frame,
as illustrated in Figure 3.

Mean

Figure 3: Creating the output sequence from the chosen audio
segments. Note that each box stands for an entire audio feature
vector g ∈ otaudio .

3.2. Unit clustering

The proposed Unit Selection approach taken in this work aims
to improve the contents of the unit codebook to reduce audio
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artifacts resulting from the selection of wrong units. This is
done by employing clustering to create units that are more repre-
sentative of a single correspondence between EMG and audio
signal than the units in the basic Unit Selection approach. This
has the benefit of reducing sensitivity to outlier units, a single
one of which can already greatly reduce intelligibility. Addition-
ally, it eliminates redundancies in the codebook, which reduces
computation time requirements for the conversion process.

A set of base units un is created in the same way as in
the basic Unit Selection approach shown in section 3.1. These
base units are then clustered in two stages, using the k-means
algorithm. First, units are clustered according to the combined
audio feature vector [g | g ∈ unaudio ] of all audio frames
covered by each unit. Second, the units assigned to each audio
cluster are clustered (separately for each cluster) according to
the combined EMG feature vector [f | f ∈ unemg ] covered by
each of these units. Figure 4 illustrates this process.

Figure 4: The clustering process employed to create a more
refined unit codebook, here exemplary for 7 units, clustering
into two clusters in each stage. In stage 1, units are clustered
according to audio features (red), in stage 2, they are clustered
within the audio clusters according to EMG features (blue).

Given these cluster assignments, a set of cluster units is
created by taking calculating the mean audio and EMG feature
frames over all units assigned to a cluster. These units are then
used as the new codebook in the Unit Selection conversion pro-
cess described above.

4. Experiment setup
4.1. Acoustic features

To represent audio data, we use a set of 25 Mel-Cepstral Coeffi-
cients (MCEPs) [12]. These are extracted for frames of 32ms
length with a frame shift of 10ms. For the final speech synthe-
sis, estimations of the fundamental frequency (F0) are extracted
from the reference audio for each frame.

For listening tests, we synthesize wave audio output from
the MCEPs converted from the evaluation EMG signals and the
extracted F0s using Mel-Log Spectrum Approximation (MLSA)
[13].

4.2. Electromyographic features

In our evaluation, we follow the approach used in [7] to allow for
comparison of results and represent the EMG signal using a set
of time-domain features [14]. For a given feature f , f̄ is its frame-
based time-domain mean. Pf is the corresponding frame-based
power, and zf is the frame-based zero-crossing rate.

For an EMG signal with normalized mean x[n], the nine-
point double-averaged signal w[n] is defined as

w[n] =
1

9

4∑
k=−4

v[n+ k], where v[n] =
1

9

4∑
k=−4

x[n+ k].

The high-frequency signal is p[n] = x[n]− w[n], and the recti-
fied high-frequency signal is r[n] = |p[n]|.

Let S(f , n) denote the stacking of adjacent frames of the
feature f in the size of 2n+ 1 (−n to n) frames, which is used
in order to account for time-context information. With this, the
EMG feature TD15 is defined as follows:

TD15 = S(f2, 15),where f2 = [w̄,Pw,Pr, zp, r̄].

We compute this feature for every channel in the EMG signal,
with a frame size of 27ms and a frame shift of 10ms. We then
fuse all EMG feature vectors for a frame into one large EMG
feature vector. To reduce the dimensionality of this vector, we
apply Linear Discriminant Analysis (LDA), trained on phoneme
sub-state labels force-aligned to the parallel audio recording,
before cutting the result to 32 dimensions, giving us our final
EMG feature.

4.3. Experiment evaluation

To objectively evaluate our results, we employ the Mel-Cepstral
Distortion (MCD) score [15], defined as a scaled Euclidean dis-
tance between MCEP vectors excluding the first coefficient. To
reduce the effect of short misalignments on this measure, we per-
form a dynamic time warp alignment between reference MCEP
sequence and evaluation MCEP sequence of each utterance be-
fore computing the mean MCD score over all frames.

The subjective estimation is evaluated using AB preference
listening tests comparing the mapping output from our previous
work [7] without codebook clustering to the synthesized speech
from our proposed technique. Each participant listens to the
original target audio file and compares the mapping outputs A
and B to decide which one resembles the original speech. Each
utterance is presented in randomized order. If no preference can
be perceived, a third neutral option is available, so the listener is
not forced to make a decision.

5. Experiment results
5.1. Cluster counts

Our clustering process has two free parameters: The number
of clusters Caud into which units are split according to MCEP
features, and the number of clusters Cemg into which these
clusters are sub-clustered using the post-LDA TD15 features. To
determine good values for these parameters, we ran a series of
experiments, varying both. This evaluation was performed with
a unit size of wu = 15 and a unit shift of su = 2, values which
we have found to be good choices in previous experiments. The
results of these cluster count experiments is shown in Figure 5.
It can be seen that up to Caud = 2000, using a larger number
of audio units improves the MCD score. Improvements are
large at first, with diminishing returns approaching the minimum.
The effect of the EMG cluster count is comparatively minor -
here, a lower number of clusters tends to be better. For the rest
of our evaluation, we use cluster counts of Caud = 2000 and
Cemg = 4.

5.2. Unit size

In our previous work [7], we have found that shorter units and
lower unit shift tend to improve Unit Selection performance.
We therefore also performed the experiment described above
with a reduced unit size (wu = 7, su = 1). The results of this
evaluation can be seen in Figure 5. The longer units perform
slightly better than the short units for large Caud, however, the
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difference is very small. For the rest of our evaluation, we
decided to use long units.

Figure 5: MCD scores for Unit Selection performed with cluster
units generated by clustering with different cluster counts. Lower
is better.

5.3. Output evaluation

Figure 6 shows spectrograms of the converted output with the
proposed codebook clustering (bottom), as well as from the
baseline Unit Selection approach (middle) [7] and the original
target audio file (top) from the exemplary test utterance “The
outages were apparently caused by system failure, not sabotage.”,
taken from session Spk2-Array. The final output was synthe-
sized using the MLSA filter, based on the converted MCEP
output and the target F0 information that was extracted from
the synchronously recorded audio file. It can be seen that both
conversion approaches show similar results, with a good general
reconstruction but lacking in spectral details. Near seconds 1 and
3 (highlighted sections), phones are better reconstructed with the
codebook clustering approach.

The baseline EMG-to-speech mapping system with the Unit
Selection approach [7] achieves an average MCD of 5.17 on the
four recording sessions. With our codebook clustering approach
we obtain an average MCD of 4.71. This corresponds to a relative
improvement of 8.92%.

Unit selection conversion requires, for every evaluation unit,
the computation of the distance to every codebook unit (The
effects of this multiplicative increase are obvious when compar-
ing the conversion times of the two single-electrode sessions).
Conversion time on the evaluation set (measured on a 4 x 2.66
GHz computer with 8GB RAM) improved, on average, from ca.
47.4 to 3 times realtime, an improvement of 93.7%, due to the
reduction in codebook size from 119800 (Spk2-Array) —159987
(Spk1-Array) units down to 8000. Table 2 gives the MCDs and
conversion time for each speaker/session.

Session MCD Score Time taken for con-
version (mm:ss)

Baseline Clustering Baseline Clustering
Spk1-Single 5.38 4.93 62:57 4:07
Spk2-Single 5.13 4.65 37:56 2:24
Spk1-Array 4.85 4.36 44:50 2:29
Spk2-Array 5.33 4.91 44:41 3:18

Table 2: Mean evaluation set MCD scores and computation
time for Unit Selection with base units versus Caud = 2000,
Cemg = 4 cluster units. Lower is better.

Since objective MCD scores do not perfectly correspond

Figure 6: Exemplary spectrograms of the reference target au-
dio file, the baseline Unit Selection plus the proposed codebook
clustering EMG-to-speech output (top to bottom) of the utter-
ance: “The outages were apparently caused by system failure,
not sabotage.”

to human acoustic perception, we perform an subjective AB
preference listening test (adapted from [16]) between converted
speech from the baseline Unit Selection based EMG-to-speech
mapping [7] versus the proposed codebook clustering Unit Se-
lection output. We also included a third neutral option, when
no preference was perceived. Each participant listened to the
target audio file and compares the two mapping outputs to decide
which one is preferred. We randomly selected four utterances
from the test set of each session, resulting in 16 utterances for the
listening test, performed on 12 participants (total of 196 listened
utterances). The codebook clustering approach was preferred
in 100 (52.08%), the baseline system in 47 utterances (24.48%).
Additionally, 45 times (23.44%) no clear preference could be
made by the listener. This shows a strong preference to our
proposed mapping technique.

6. Conclusions and future work
We successfully introduced a codebook clustering method to
substantially improve our Unit Selection based EMG-to-speech
conversion, where surface electromyographic (EMG) signals
of the articulatory muscles are transformed to audible speech.
An objective evaluation shows a relative improvement of 8.92%
compared to our previous work, yielding an average MCD of
4.71, while the subjective listening test evaluation also gives clear
preference to the proposed technique. The proposed reduction
of codebook size additionally gives a substantial speedup in
conversion time.

In the future we plan to evaluate different kinds of EMG
input features, since the proposed TD15 feature is highly opti-
mized for EMG-based speech recognition, rather than for syn-
thesis. We also consider to integrate label information in the
codebook database.
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