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Abstract

Procedural modeling is the modeling of scenes using algorithms instead of ex-
plicit lists of geometry specified vertex by vertex. The implicit procedural ap-
proach to modeling has several advantages over describing scenes in an explicit
fashion, such as the possibility to have levels of detail that would be impossible
to store explicitly, as the memory requirements would be prohibitive – even an
infinite level of detail is possible when the scene description can simply provide
the detail as soon as it becomes necessary during the rendering process.

It is obvious, then, that describing scenes or objects procedurally is desirable.
However, while intuitively accessible modeling tools for the creation of explicit
geometry abound, there are only very few and hardly any mature tools or frame-
works for the procedural modeling of objects or scenes.

This thesis will give an overview over the current state of procedural modeling
frameworks. After explaining the theoretical concepts required for its under-
standing, it will go into detail about a specific type of procedural modeling –
modeling with implicit surfaces, with rendering based on distance functions –
and introduce a tool which can be used to accomplish this task. It will then
introduce improvements made to this tool throughout the course of this thesis,
including the development of a cache enabling the real-time use of previously
prohibitively expensive noise functions, and finally discuss and summarize its
now extended capabilities.

Figure 0.1: A scene modeled procedurally using our distance function modeling tool.
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1 Introduction

Procedural modeling is the process of using algorithms to describe scenes or
objects. [Ebe03, p. 1] Instead of storing the geometry of an object explicitly –
as a list of vertices and faces and their properties, as a cloud of points, or in any
other explicit way – only a method for generating this explicit description, if
necessary including various parameters, is stored and later evaluated on demand
during the rendering process. Procedural generation of content, in general,
is becoming more and more important in recent computer games, where the
demand for more detail or content outstrips the typically available storage.
Procedural modeling could, in situations where explicit geometry is prohibitively
big and the instancing of the same models over and over is too repetitive, provide
a way to have instantiable models which can be varied by simply adjusting a
few parameters.

(a) A screen shot from the video game
Minecraft, in which players build and extend
a procedurally generated world.

(b) A screen shot from the demo “Ele-
vated”, showing a procedurally generated
landscape.

Figure 1.1: Examples of procedural modeling applications.

One popular use of procedural modeling is the procedural generation of terrain.
[Dac06] A common approach here is to interpret a 2D multi-octave noise function
(Compare equation (1.1)) as a height field, yielding interesting and realistic
mountain formations which are rich in detail. Figure 1b shows an example
of a landscape generated using this technique and textured with procedurally
generated textures.

noisemo(p) =

n−1∑
i=0

(
1

α
)i∗β · noise(αi · p) (1.1)

For foliage, a formalized description of plant growth, a so called “Lindenmayer-
” or “L-System”, is a common approach. [PL91, p. 3] L-Systems consist of an
alphabet, production rules defining a way to turn a given element of the alphabet
into a new string, and an initial state. To evaluate the system, the rules are
applied in parallel to the current string, starting with the initial state. It is
common to allow multiple productions per variable, with probabilities for each
production, yielding a probabilistic model. By mapping the variables to drawing
or geometry generating instructions, L-Systems provide a way to describe plant-
like self-similar growth processes.
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Figure 1.2: Plant-like drawing generated using L-Systems. [PL91, p. 25]

Another recent development, which has found applications in professional movie
production, is the procedural generation of entire cityscapes. A typical approach
to this involves extending L-Systems to be able to generate buildings and the
distribution of buildings based on given constraints such as population density
and water levels on a 2D map. [PM01] The obvious benefit here is the ease of
generation – even big changes in layout do not require the manual adjustment
of hundreds of buildings – and the ease of applying level of detail techniques for
efficient rendering – to generate a model with less detail, all one has to do is
perform fewer iterations of L-System production.

Figure 1.3: A procedurally generated city (Image: [PM01]).

An extreme example of procedural generation in game development is the game
“kkrieger”, released by German developer group “theprodukkt” in 2004, which
uses procedural techniques to store an entire first-person shooter game in 96
kilobytes. [.th04]
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Figure 1.4: .kkrieger, a game created using procedural generation of content. [.th04]

Implicit surfaces are one class of mathematical objects that are convenient for
procedural modeling. By specifying a function defined in R3 and an isovalue
at which the surface is located, many kinds of surfaces can easily be described,
combined and modified. This thesis will introduce their mathematical foun-
dations and describe their use in modeling, giving special consideration to the
practical implementation of modeling with implicit surfaces by concentrating on
a special subcategory of functions – distance functions, which give an estimate
of the distance to the closest surface at any point in space.

2 Preliminaries

2.1 Implicit surfaces

Given a function f(p) : Rn → R, we can define a set { p | f(p) = c; c ∈ R },
called a “level set”, the set of all points where a function f(p) takes value c.
[BMMS95, p. 708] For n = 3, this set is called an “isosurface” or “implicit
surface”, as it is the surface implied by the function f(p). It is possible to define
implicit functions discretely on a grid using interpolation. Such functions are
important in medical applications, as they are generated as the output data by
medical imaging devices such as MRI or CT scanners.

Implicit surfaces are useful not only for visualizing a given data set, but also
for modeling, since they provide a direct mapping from a function defined in
space to geometry. By manipulating the function, the geometry is modified.
Higher-frequency function components directly correspond to greater surface
detail, lower-frequency components define the overall shape of the object being
modeled. In procedural modeling with implicit surfaces, analytic functions im-
plying geometric shapes or detail are combined in various ways to create objects
or scenes.

3



(a) Isocontours of f(x, y) = sin(1.3 · x) ·
cos(0.9 · y) + cos(0.1 · sin(x)) · sin(1.1 · y).

(b) (R −
√

x2 + y2)2 + z2 − r2 = 0 implies
a torus.

Figure 2.1: Examples of level sets.

2.2 Distance functions

Distance functions are a special kind of function from R3 to R. For every point
p ∈ R3 in space, a distance function d(p) gives the distance to the closest point
of an implicit surface defined by d(p) = 0. A signed distance function gives the
signed distance to that surface, usually with the distances being negative on the
inside of objects.

(a) Isolines on a slice through a distance
function implying two spheres and a torus.
Red labels indicate distance at line.

(b) Isolines combined with a rendering of
the surface implied by the distance function.

Figure 2.2: Example of a distance function.

For modeling, distance functions have many advantages over general implicit
surfaces. One advantage is the ease of calculating normals for shading. The
vector pointing towards the maximum magnitude of the distance increase will
always point orthogonally away from the surface. Thus, the normalized gradient
of d(p) at a point of the surface is the normal of that surface at that point. In
cases where the derivative of the distance function is too hard to determine, a
good approximation can be calculated using the method of central differences,
which works by replacing the infinitesimal quotients of partial differentiation
with small, but non-infinitesimal values.

The major advantage, though, is the existence of a robust and fast technique to
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Figure 2.3: Slice through the distance function around a torus. The torus is shaded
using normals calculated via central differences.

visualize distance functions as implicit surfaces. This technique will be described
in the next section.

2.3 Sphere tracing

Generally, methods for rendering implicit surfaces can be divided into two cate-
gories. One category of algorithms attempts to first convert the implicit surface
to a polygon representation, which can then be rendered using any of the meth-
ods commonly used for this. These methods, while often reasonably performant,
are usually incapable of capturing fine surface detail and can miss disconnected
surface parts altogether. The other category of algorithms try to directly visu-
alize the surfaces using a ray tracing approach. This is equal to the problem of
finding the root of a function f(p) along the ray. Typically, any of a number of
numerical root finding methods are employed for this, as the direct calculation
of these roots is impossible or very complex for many functions (Such as many
quintic or even higher order functions). The problem with these methods is
that, as they have to guarantee that the surface is not missed, big jumps along
the ray are impossible – thus, brute force small-fixed-increment-along-a-ray root
finding methods like the one used in Hypertexture [PH89] are not suitable for
use in interactive applications. [Har96]

Sphere tracing, introduced by Hart in 1996, is a fast and robust method for
visualizing distance functions as implicit surfaces. It makes use of the fact that
with a distance function, the minimum distance to the surface at any point in
space is known. This gives a minimum safe step distance to the surface, allowing
for fast iteration along the ray without missing any surface detail. [Har96]

Sphere tracing does, in fact, not require that the function d(p) being visualized
always gives the exact distance to the surface – this is only required for optimal
performance. For correctness, all that is required is that the function must
never overestimate the minimum distance to the surface. Underestimation of

5



(a) A hitting ray. (b) A missing ray. Some condition, such as
a maximum iteration count, has to be used
to terminate rays like this.

Figure 2.4: Illustration of a hitting and a missing ray traced using sphere tracing.
Rays start at the eye. The biggest safe step distance is used to reach the surface in as
few steps as possible.

the distance is acceptable and will result in a correct rendering of the surface,
though performance will suffer – as the calculated distance will be smaller than
the minimum distance to the surface, more steps will be necessary before the
surface is reached.

For common geometric objects, functions giving the distance to the objects
surface or a good estimation of this distance are known. More complex objects
can be constructed from these basic objects using constructive solid geometry
or a variety of transformations.

A practical GPU implementation of sphere tracing will be presented later in
this thesis. For a line by line walk-through of a simple sphere tracing renderer
implemented in the OpenGL shading language, refer to Appendix A on page
55.

2.4 Phong illumination

The Phong illumination model, introduced in [Pho75], is an easy to implement
and easy to evaluate model for the shading of 3D scenes, resulting in a glossy,
plastic-like look. While not very realistic, Phong illumination is sufficient for
providing the graphical cues that allow a user to infer the shape of the object
being rendered very well, especially when it is combined with shadowing.

Phongs illumination model consists of three terms: An ambient term, a diffuse
term and a specular term. To determine the colour of a point p on an object,
these terms are evaluated for all light sources and for the normal and material
at that point, and the results are added up to create the final colour.

The ambient term is the easiest: It is simply a constant term ka added to the
strength of the diffuse lighting, to avoid overly dark shadows in any part of the
scene, crudely approximating global illumination. It is usually multiplied with
the materials diffuse colour ρd before it is added to the other terms.

6



The diffuse term is calculated according to Lambertian reflectance: The amount
of light reflected off a diffuse surface in all directions is proportional to the cosine
of the angle between the unit vector pointing to the light source and the surface
normal, i.e. the dot product of the normal N and the unit vector pointing
towards the light source L.

The specular term is entirely phenomenological, and attempts to simulate the
imperfect specular reflection a spherical area light source would create on the
surface. It is calculated by taking the dot product of the vector R pointing in
the direction that light reflected at the surface would take and the vector V
pointing towards the camera, and then taking the result to some power α, the
“Phong exponent”.

Before addition, the specular and diffuse terms are multiplied first with scaling
factors kd and ks and then with the materials diffuse colour ρd and specular
colour ρs, respectively. Bringing it all together, the complete equation for cal-
culating the colour of a point on a surface according to the Phong illumination
model is as follows:

phong(p) = ka · ρd +
∑

i∈lights

(Li ·Np) · kd · ρd + (Ri · Vp)α · ks · ρs (2.1)

Figure 2.5: An object shaded using the Phong illumination model.

2.5 Constructive Solid Geometry

Constructive solid geometry is the construction of solid objects using Boolean
operations for object combination. The basic Boolean operations are union (∪),
intersection (∩) and difference (−).

A ∪B = {x | x ∈ A ∨ x ∈ B} (2.2)

A ∩B = {x | x ∈ A ∧ x ∈ B} (2.3)

A−B = {x | x ∈ A ∧ ¬x ∈ B} (2.4)
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The basic CSG operations on distance functions are easily obtained from the
definition of distance functions and these Boolean operations:

2.5.1 Union

The CSG union is, intuitively, the “combination” of two objects. For distance
functions, it follows directly from the definition of those: The distance from
the union of two surfaces is the minimum distance from either of the surfaces,
so for any point p and distance functions d1(p) and d2(p), the union u(p) is
u(p) = min(d1, d2).

2.5.2 Intersection

The CSG intersection of two objects are the parts of both objects which overlap.
As Hart showed in [Har96], the distance to the intersection of the surfaces
defined by d1(p) and d2(p) is bounded by i(p) = max(d1, d2).

2.5.3 Difference

CSG difference of two objects consists of the parts of object one that are not
overlapped by object two, or more intuitively the “carving out” of object two
from object 1. Taking advantage of the signed nature of the distance function,
the complement of a distance function is defined as d̄(p) = −d(p). Using this,
the difference of d1(p) and d2(p) can be defined as the intersection between d1(p)
and the complement of d2(p): s(p) = max(d1(p), d̄2(p)) = max(d1(p),−d2(p)).

Figure 2.6: Example of a CSG operation: CSG difference of a box and a sphere.

2.6 Transformations of distance functions

Simply combining basic geometric primitives centered around the origin via
constructive solid geometry is not sufficient for creating interesting objects – at
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minimum, we need to be able to transform objects to position them in space
arbitrarily or modify their shape, if possible. What is necessary is a way to
use transformations of some kind with the rendering algorithm. An easy way
to do this is to transform the coordinate space that the algorithm operates on
– any transformation of the coordinate space will essentially apply the inverse
transformation to objects described by distance functions operating in post-
transformation space. It is, however, important to give special consideration
to the nature of the functions being transformed if correct results are to be
ensured.

Figure 2.7: The function x2 + y2 = 1 is first translated by applying the domain

transform p′ = p−
(

3
3

)
and then scaled by applying p′′ = p′ · 2.

Any transform of the coordinate space which can ensure that distances are not
overestimated by functions operating in post-transformation space relatively to
pre-transformation space – intuitively, transformations of the space which only
decrease or at least never increase the distance between two points – can easily
be used within the sphere tracing rendering algorithm, their application does
not require any special care and the algorithm will continue working as intended
and produce correct results.

Whether a function satisfies this condition can be determined using Lipschitz
continuity. A function f(p) : R3 → R is said to be Lipschitz continuous under
the Euclidean (L2) norm if there is a constant L ∈ R (L ≥ 0) so that for any
p1, p2 ∈ R3A: |f(p1)− f(p2)| ≤ L · |p1− p2|. When f(p) is differentiable, this
is equivalent to the first derivative of f(p) being bounded by L – intuitively,
in R3 or parts thereof, L gives the global maximum rate of change per spatial
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unit. The smallest possible L so that these conditions hold is called the “best
Lipschitz constant”. [Har96]

5 10 15

5

10

15

Figure 2.8: f(x) = sin(2 · x) + x is differentiable and f ′(x) = 2 · cos(x) + 1, which
is absolutely bounded by 3. f(x) is thus Lipschitz-continuous with best Lipschitz
constant 3. It will always stay out of the area between two lines with elevation 3 and
−3 intersecting it at the same point (Highlighted for one point as an example in the
above plot).

As a transform with a best Lipschitz constant L ≤ 1 will never make distances in
space increase, it maps functions that do not overestimate distances to functions
that do not overestimate distances. One class of transforms for which this holds
are rigid body transformations, transformations which only move objects in
space without deforming them. For such functions, we say that the “Lipschitz
condition” holds.

2.6.1 Rotation

Rotations can be described by applying a rotation matrix to the coordinate
space – by rotating the coordinate space before evaluating our distance function
in the now rotated space, we rotate the object with the inverse of the coordinate
space rotation. In order to accomplish this, we construct a rotation matrix R
describing the desired rotation – for example from Euler angles or by using
quaternions – and apply it to the position vector just before distance function
evaluation.

drotated(p) = d(R · p) (2.5)

Rotations are known to be isometric, that is, metric-preserving, under the Eu-
clidean norm: They do not change the distance between two points. This makes
rotations Lipschitz-continuous with best Lipschitz constant L = 1 and thus eas-
ily usable in sphere tracing.
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2.6.2 Translation

To translate an object, we can again apply the transformation before performing
the distance function evaluation: This time, we simply add the translation vector
v to the position and evaluate the distance function at the resulting new position.
Just like rotations, translations are isometric under the Euclidean norm.

dtranslated(p) = d(

vxvy
vz

 + p) (2.6)

2.6.3 Rigid body transformations

As both rotation and translation are Lipschitz continuous with Lrot—trans = 1,
a combination of any number of these operations – that is, any rigid body
transformation – is also Lipschitz continuous with Lrbt = 1. Intuitively, no
combination of rotations and translations will ever change the distance between
two points at all, so these kinds of transformations are not a problem for sphere
tracing, making it possible to position objects in space anywhere one wants
them to be, and to orient them however one would like them to be oriented.

drbt(p) = d(R · p+ v) (2.7)

Figure 2.9: A box at the origin and translated / rotated.

2.6.4 Transformations with L > 1

Many transformations are Lipschitz continuous, but most interesting transfor-
mations are not Lipschitz continuous with a best Lipschitz constant of L ≤ 1.
Thus, a way to incorporate transformations where the Lipschitz condition does
not hold into sphere tracing based rendering becomes necessary. Thankfully, a
method for converting any Lipschitz-continuous function into a function where
L ≤ 1 is easily obtained by taking a closer look at Lipschitz continuity:

11



For transformations T (p) with a best Lipschitz constant of L > 1, a distance
bound for the transformed implicit surface can be derived so that distances are
at worst underestimated after the transformation has been applied. [Har96]

dtransformed(p) ≤ d(T (P )) · 1

L
(2.8)

Using this, we can derive a way to incorporate transformations with L > 1 into
sphere tracing based rendering methods: By simply multiplying the function
output – and thus, the step size – by 1/L when operating in the transformed
space, the maximum change per distance unit is now again bounded by 1, and
the modified function satisfies the Lipschitz condition. When chaining multiple
such transformations, the scaling factors from each transformation can be mul-
tiplied up to result in a total scaling factor that guarantees non-overestimation
of distances. With this, correctness as well as optimal performance under the
given constraints can be guaranteed for all Lipschitz-continuous functions.

A nontrivial example of a transformation with best Lipschitz constant L > 1
is a twist of amount a around an axis, constrained to the unit cylinder around
that axis.

twist(p) =

px · cos(a · pz)− py · sin(a · pz)
px · sin(a · pz) + py · cos(a · pz)

pz

 (2.9)

In the given domain, the Lipschitz constant of this twist function is Ltwist =√
4 + (πa )2. [Har96] Knowing this, we can sphere trace dtwist(p) = d(twist(p))

in a robust fashion by reducing the step size accordingly in each iteration while
operating inside of the transformed space and the given domain.

Figure 2.10: Example of a twist transformation.

2.6.5 Uniform scaling

While it is often possible to simply create primitives in the desired size while
modeling, it is sometimes necessary to scale them – or whole groups or combi-
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nations of objects – after the fact. To do this, we can utilize a scaling transfor-
mation.

A uniform scaling with scale factor a is easily expressed as a scaling matrix.

S =

a 0 0
0 a 0
0 0 a

 (2.10)

All eigenvalues of this matrix are obviously a, which makes the spectral radius
ρ – the absolutely maximal eigenvalue – of this matrix |a|. For a symmetric
matrix S, the spectral radius is equal to the Euclidean matrix norm of that
matrix. As this norm is induced by the Euclidean vector norm, we can derive
the maximum amount the matrix will ever scale any given vector x under this
norm, i.e. the best Lipschitz constant for the transformation described by this
matrix.

|A · x|vec ≤ |A|mat · |x|vec
|A · x|vec
|x|vec

≤ |A|mat (2.11)

L = |A|mat

This best Lipschitz constant is the scale factor a necessitating a multiplication of
the step size by 1

a to ensure correctness of results. With this, we can effortlessly
handle scaling while sphere tracing, enabling us to balance the size of parts of
our scene or object against each other as we see fit.

2.6.6 Nonuniform scaling

While it is preferable to model with correctly-proportioned primitives to begin
with, this is not always possible. To adjust the proportions of parts of an object
along different axes, or to mirror parts of it by using negative scale factors,
nonuniform scalings can be used.

These nonuniform scalings can again be expressed as a scaling matrix:

Snonuniform =

ax 0 0
0 ay 0
0 0 az

 (2.12)

As the non-uniform scaling matrix is again symmetric, we can use the same
argument as above to determine the best Lipschitz constant as the absolutely
maximal eigenvalue, which for L = amax = max(|ax|, |ay|, |az|), gives a necessary
scale factor of 1

amax
.
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Figure 2.11: A box with uniform and nonuniform scaling applied.

2.6.7 Non-applicable transformations

Transformations which are not Lipschitz-continuous, i.e. transformations for
which the first derivative is unbounded, cannot easily be used in sphere tracing.
Sometimes (As with the twist function given above) reducing the transformation
domain can lead to a function that can be used (If the function is Lipschitz con-
tinuous in this domain). Sometimes, this cannot be done, and a transformation
cannot, in general, be used with sphere tracing if correct results are desired.
In practice, restricting the domain and adjusting the step size – manually, if
there is no other way – often works, though the reduction in step size naturally
corresponds to an increase in rendering time. Realistically, though, the trans-
formations described here, in combination with constructive solid geometry, are
more than adequate for most modeling tasks.

2.7 Blending distance functions

One interesting and often visually pleasing way to combine two distance func-
tions is to apply a blend to create an object that is visually “between” two given
objects, or an object where parts of the input objects are joined in a smooth
manner. To blend two objects specified with distance functions d1(p) and d2(p)
with a factor a ∈ 1, a simple linear blend can be employed.

dblend(p) = a · d1(p) + (1− a) · d2(p), a ∈ [0, 1] (2.13)

In addition to keeping this blend factor constant, various techniques using a
blend factor that varies in space can be employed, such as interpolating between
the objects according to the distance to some given point o or some function of
it, clamping the result between 0 and 1.
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dspatial blend(p) = a · d1(p) + (1− a) · d2(p), (2.14)

(where a = max(0,min(1, |o− p|)))

Alas, the result of this blend is not necessarily a proper distance function – it
results in a function that can sometimes overestimate distances, depending on
the functions used as basis of the blend and the blending factor. To solve this
problem, we can employ so-called pseudo-norm blends as described by Hart.
[Har96] Alternatively, we can again try adjusting the step distance until we are
satisfied that the result for the given blend and the given view on the scene is
correct.

Figure 2.12: Blend of a box and sphere with respect to the origin.

2.8 Offsetting and displacement mapping of distance func-
tions

A distance function simply gives the distance to the nearest surface for any
given point in space. For an implicit surface implied by a function like this, an
offset surface – offset by some distance o – can be constructed without much
trouble by simply subtracting the offset from the resulting distance. (d, in this
equation, is to be understood as a functional parameter)

doffset(p, d, o) = d(p)− o (2.15)

Parametrizing the displacement over a surface or in space yields displacement
mapping at the cost of distance overestimation, which again has to be corrected
by reducing step size by dividing it by the maximum derivative of the displace-
ment map (or function) used.
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Figure 2.13: A sphere with displacement mapping applied. The original sphere is
overlaid for reference.

Care has to be taken when using offset-based techniques in combination with
functions or transformations which do not return correct distances but rather
return distance estimates (Such as the CSG intersection operation), as the off-
setting might not work correctly in these cases, resulting in discontinuities at
object edges.

Figure 2.14: An illustration of the problem of applying an offset to a distance esti-
mate: The isolines (in an axis-aligned slice) of the distance function around a box,
as described by equation (4.5), with the correct distance for one point indicated by a
labeled arrow. Offsetting by 1 would simply “scale up” the box to the isoline at that
distance instead of resulting in a box with rounded off corners and edges, as one would
expect.
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2.9 Repetition

By adjusting the domain to repeat along one or multiple axes, we can can create
an infinite repetition of an object. This can be easily done using the modulo
(mod) operation, the operation giving the (signed) remainder of a division. To
ensure that the distances are never overestimated, the object being repeated
needs to be symmetric about the plane orthogonal to the axis of repetition
running through the center of the repetition “cell”. With this, and again with d
understood as a function parameter, we can describe a repetition of function d(p)
along any coordinate axis for objects symmetric about the coordinate planes,
with cell sizes a = ax, ay, az).

drepeat(p, d, a) = d(

px + ax
2 mod ax − ax

2
px +

ay
2 mod ay − ay

2
px + az

2 mod az − az
2

) (2.16)

The object is first shifted by half the cell size along the axes to center it in the
repetition cell, then the domain repetition is applied, and finally, after the rep-
etition, the shift is reversed, re-centering the cell around the coordinate origin.
These repeated objects can be used in modeling just like any other object and
can themselves be further transformed, used in CSG – or even repeated again,
possibly after further transformation, to create elaborate scenes or objects.

Figure 2.15: A sphere infinitely repeated along the x and z axes.

3 Previous work

While it is still not as common as explicit modeling, recent advances in com-
putational power have made interactive procedural modeling increasingly more
possible. Thus, there have been attempts to create intuitively usable tools to
allow users to perform basic procedural modeling tasks, often by integrating the
procedural generation tightly with polygon based modeling, foregoing a more di-
rect approach to visualization for increased user familiarity. Additionally, there
are some areas of modeling where the procedural approach is highly popular
and common, for various reasons.
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3.1 Data-flow based

An obvious approach to enabling the interactive creation and editing of proce-
durally described objects is to use flow graphs to describe the object-creating
algorithm. In recent years, several tools using this approach have been released,
commercially and in the scientific community.

3.1.1 Plab

In 2007, Ganster and Klein introduced Plab [GK07] as a general purpose tool for
the procedural description of scenes. To accomplish this, they introduced a set of
operators and primitives which can be used to describe a method for generating
and coloring polygons. These operators and primitives are implemented as nodes
of a so-called model graph, which is executed to generate a finished model.

For texture generation, there are texture operators such as an operator to gen-
erate the red, green and blue components of a texture from a formula, or an
operator to generate a texture by choosing a random value for every texel and
interpolating between two user-provided colours using the random value as the
interpolant. The generation of polygons is handled by so-called components.
Components are, in Plab, geometric primitives, or combinations thereof, exam-
ples include cubes, spheres, cones, cylinders, stems (connected cylinders), quad
strips and a component for creating a surface from a 2D function. The geometry
created this way can be transformed using operators like scale, translate, rotate
or using arbitrary 4x4 transformation matrices. Flow control is achieved using
a comparison node, a node for repeating an action a given number of times
or until a condition is met, and a node to call sub-model-graphs. A special
“Gizmo” widget enables the interactive moving of points in space by the user.

(a) Model graph. (b) Result.

Figure 3.1: Example of a Plab model graph and the object that results from its
execution.

Using these nodes, the user can create model graphs, which Plab then generates
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polygon geometry from. Finally, it renders this geometry using the OpenGL
graphics library.

While Plab is powerful, it lacks interactivity for complex scenes: The interme-
diate geometry-generation step introduces added complexity, and the tool has
to rely on pre-generation for big scenes. Furthermore, while Gizmo widgets are
available as a node, the fundamental modeling approach is creating a model
graph first, and then adding these Gizmos to modify parts of it – this is not
particularly accessible to artists wanting to use the tool.

3.1.2 Autodesk Softimage ICE

Autodesks “Softimage” is a commercial 3D modeling application package used
by many movie studios’ special effects departments. Starting with version 7,
Softimage contains the Softimage Interactive Creative Environment (ICE), a
procedural modeling framework. ICE allows its users to define geometry cre-
ation or modification operations. The operations create or operate on polygon
meshes, allowing later adjustment or modification of parameters. [Aut]

3.2 Special purpose

There are some areas of modeling where the procedural approach is the norm
rather than the exception. The following section briefly introduces these.

3.2.1 Terrain generation

Interesting terrain is required in a wide variety of applications. In modern
film making, CGI (Computer Generated Imagery) enables directors to easily
set stories in sets that previously had to be hand-crafted as smaller-than-life
models and painstakingly integrated with the rest of the movie. Video games
set in outdoor areas also require terrain, often great amounts of it, to give the
player the maximum amount freedom possible.

To create large amounts of convincingly-looking terrain by hand would be no
small task, so a wide variety of tools for this have sprung up. These tools
usually use fractal noise and various shading methods to generate realistic-
looking terrain.

One popular commercial tool for the generation of terrain is Planetside Softwares
“Terragen 2” package. It is based on technology used for creating landscapes in
movies such as Stealth and Flags of Our Fathers. [Sof]

3.2.2 Plant generation

As landscapes made of only rocks are not particularly interesting nor very re-
alistic, the addition of foliage is often desired. Single plants can be generated
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using L-Systems and then distributed over a given terrain. The procedural de-
scription allows for easy generation of large amounts of similar, but different
plants.

A popular software package for this is Xfrog, developed in 1996 as a diploma
thesis at the University of Karlsruhe. [DL97] Today, it is sold as a commercial
package, often bundled with Terragen 2 as a complete integrated landscape
generation solution.

Figure 3.2: A tree generated with an early version of Xfrog (Image: [DL97]).

3.3 CSG-based

Constructive solid geometry is popular even in explicit-geometry modeling tools:
It is intuitively accessible to users as the “combining” and “carving” of basic
primitives. Practically every modeling software package offers CSG capabilities
of some kind, and CAD software such as BRL-CAD may combine CSG using
implicit surfaces with other geometric representations. There are, however, also
tools using a purely procedural approach.

3.4 DFModel

DFModel [RMD11] is a tool that allows the user to model scenes procedurally
using “blob trees” [WGG99] as the primary paradigm. Scenes are represented
as a tree consisting of basic or complex geometric primitives (Cubes, cylin-
ders, spheres, ...), transformations (rotation, translation), deformations (such
as twisting) and CSG as well as blending operations. Additional tools allow for
the creation of materials and addition of textures for surface detail. The scenes
described like this are visualized directly – not via the conversion to polygons,
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but using sphere tracing. As one of the topics of this thesis was the extension of
DFModel to be more useful for general purpose modeling tasks, the next section
will introduce it more thoroughly.

4 DFModel: Previous status

This section shall serve as a brief introduction to DFModel as it was before
this thesis – concerning GUI layout, structure of the code, frameworks and
technologies used and features implemented – so that the changes made to the
application can be more easily understood.

4.1 Graphical User Interface Layout

The GUI of DFModel is, by default, split into multiple sections.

On the upper edge of the user interface are the menu bar and toolbar. The
menu bar allows access to all of the programs functions, grouped by general
area of function:

� A “File” menu allows for the saving and loading of scenes and for quitting
the application.

� An “Add” menu allows the user to add shapes and transformations to the
scene.

� A “View” menu makes readjusting the GUI by hiding or showing certain
components possible, and also contains tools for setting up the central
view window and camera.

The tool bar allows access to parts of the view menu functionality, and also
allows for the switching of the mouse mode – essentially, it enables the user to
set the mouse to either change the perspective, select objects but never change
the perspective, or add transforms of various types.

Below the menu bar, the user interface is split in two: On the left is the main
scene view, while the settings panel is on the right. The main view is the primary
view onto the scene – in it, the user can inspect the scene. Using the tools from
the toolbar, the user can rotate the view or select objects and translate, rotate
or otherwise transform them. The main view can be split into up to four smaller
views, which can then be set to provide different views on the scene.

The Settings panel, on the right, allows access to different categories of scene
settings – most importantly, it contains the scene graph, the blob tree that
describes the scene being worked on. Additionally, it allows for setting up views
and cameras, for turning on or off various tools for the analysis of distance
functions, for tuning the ray marching algorithm used to render the scene for
the main view, and for exporting a triangulation of the scene as a mesh.
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On the very bottom are the shader and materials panels. The materials panel
allows for the creation of materials, which can then be applied to objects in
the scene, and for the loading of images to be used as textures or displacement
maps in materials.

The shader panel shows the shader currently used to render the main view (A
short explanation of this will be given in the “Technical realization” section).
It allows the user to regenerate the shader from the scene graph or to edit
the shader directly, which is very useful for experimentation and debugging
purposes.

Figure 4.1: DFModel user interface.

4.2 Technical realization

DFModel is implemented as a C++ application. It uses the Qt framework for
the graphical user interface and to allow for the easier handling of common tasks
such as string handling and file management and for basic data structures such
as lists and trees. To render the scene, the OpenGL graphics API is used.

The choice of C++ as a language and Qt and OpenGL as core technologies allow
for cross-platform compatibility where these two things are supported. This is
the case on at least GNU/Linux, Microsoft Windows and Apples Mac OS X.

From a high level perspective, the code is structured using a model-view-controller
approach, an approach often used to structure complex, data driven applica-
tions.

The scene is represented as a graph made of instances of classes representing the
different basic shapes and operations. The scene graph node classes all inherit
from the same base class, making it easy to iterate through the different scene
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objects. Each node that is not a leaf (leaves being basic shapes) has a list of
child nodes. Through this, starting from a root node, a scene graph is created.

The view – the main scene view widget and scene graph viewer – takes the data
stored in the model and uses sphere tracing to display a rendering of the scene.
To the right, the scene graph view uses helper classes provided by Qt to display
the scene graph as a tree view, enabling the user to easily select specific objects
and edit their properties directly and numerically, instead of dragging things
around in the scene view.

4.2.1 Rendering

The actual rendering of the scene is done using the OpenGL graphics API,
though not in the traditional, rasterization based way. Instead, the only thing
that is rasterized by OpenGL is a single, screen sized, screen aligned quad.
Then, using the programmable nature of modern graphics hardware, the actual
rendering algorithm is implemented completely in the fragment shader – the
shader evaluated for every pixel of the output image. This is possible due to the
relatively simple, yet powerful nature of the sphere tracing method – a simple
version that computes hits and shades objects using the phong illumination
model can be implemented in less than a page of GL Shader Language code.
The shader computes the hit object and (Using the object material, a normal
calculated using the method of central differences and the phong illumination
model) the colour for the pixel it is being evaluated for and finally outputs the
colour and the object ID (to enable picking of objects using the mouse).

To generate the scene description – essentially a piece of code that, when fed a
position in space, returns the value of the distance function at that point and
the ID of the object that is closest to this point – the scene graph node class
has a function that the application can call to generate the distance function
for this node. Nodes with children can use the same function to generate the
code for the distance function of the child nodes (potentially with a transformed
position parameter), which they can then combine in various ways to, for exam-
ple, perform CSG or blending. To generate the complete scene description, all
the application has to do is ask the root node for its distance function – from
there on, the different classes take care of generating and combining the chain
of functions making up the scene, each doing its small part.

In addition to sphere tracing the scene itself, DFModel also performs an addi-
tional shadow calculation step – tracing from the light source to the point that
was originally hit to see if light from the light source can reach. By tracing from
the light source to the surface instead of the other way around, the so called
“slow escape” problem – as the safe distance when starting at the surface is very
small, no big steps can be made, and many iterations are needed to get away
from the surface – is avoided.

To further improve shading, DFModel uses the proximity information that the
distance function presents to calculate an ambient occlusion value (Sampling it
at 5 points away from the surface along the normal), and by taking the distance
to occluders generating shadows into account while marching the shadow ray
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(resulting in soft shadows).

1 f l o a t scene ( vec3 pos ) {
2 f l o a t ball1 = 1.0/ length ( pos − vec3 ( −1 .5 , 0 . 0 , 4 . 0 ) ) ;
3 f l o a t ball2 = 1.0/ length ( pos − vec3 ( 1 . 0 , 1 . 5 , 5 . 0 ) ) ;
4 f l o a t ball3 = 1.0/ length ( pos − vec3 (3 . 0 , −2 .5 , 5 . 0 ) ) ;
5 re turn 1 . 0/ ( ball1+ball2+ball3 ) − 1 . 0 ;
6 }
7
8 void main ( ) {
9 vec3 ray = vec3 ( ( gl FragCoord . xy − vec2 ( 300 . 0 ) ) / 3 0 0 . 0 , 1 . 0 ) ;

10 ray = normal ize ( ray ) ;
11
12 i n t c = 0 ;
13 f l o a t dist = 1000 . 0 ;
14 vec3 pos = vec3 ( 0 . 0 ) ;
15
16 whi le ( c++ <= 500 && dist > 0 . 01 ) {
17 dist = scene ( pos ) ;
18 pos += dist * ray ;
19 }
20
21 vec3 d = vec3 ( 0 . 0 1 , 0 . 0 , 0 . 0 ) ;
22 vec3 n = normal ize ( vec3 (
23 scene ( pos + d . xyy ) − scene ( pos − d . xyy ) ,
24 scene ( pos + d . yxy ) − scene ( pos − d . yxy ) ,
25 scene ( pos + d . yxx ) − scene ( pos − d . yxx )
26 ) ) ;
27
28 i f ( c < 500) {
29 vec3 light = vec3 (4 . 0 , −2 .0 , 0 . 0 ) ;
30 vec3 tolight = normal ize ( light−pos ) ;
31 f l o a t diff = max( 0 . 0 , dot ( n , tolight ) ) ;
32 vec3 reflected = normal ize ( r e f l e c t ( tolight , n ) ) ;
33 f l o a t spec = max( 0 . 0 , pow( dot ( reflected , normal ize ( pos ) ) , 1 0 . 0 ) ) ;
34 vec3 colour = vec4 ( 0 . 5 , 0 . 2 , 0 . 9 , 1 . 0 ) ;
35 g l FragColor = vec4 ( diff +0.2)* colour+vec4 ( spec *0 . 6 ) ;
36 }
37 e l s e {
38 g l FragColor = vec4 (0) ;
39 }
40 }

Figure 4.2: A simple implementation of sphere tracing using GLSL, including a blobby-
objects scene and Phong illumination based shading. For a line by line explanation of
this code, refer to Appendix A on page 55.
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Figure 4.3: Output image of the sphere tracer from figure 4.2.

4.3 Shapes

DFModel is capable of rendering a variety of basic geometric shapes by directly
evaluating the closed form of their implicit description. The primitives are
always centered around the origin, primitives positioned elsewhere are obtained
using rigid body transformations.

For the purpose of describing the methods of generating basic primitives and
shapes available in DFModel, this section will use the variable p as the three-
dimensional vector (px, py, pz) indicating a position of point P in space from
which the distance to the shape is to be determined or estimated.

4.3.1 Sphere

The sphere is the simplest object to describe in terms of distance functions. To
obtain the distance from a sphere, first consider the degenerate case of a sphere
with zero radius, the distance from a point. From this, we can then generate
an offset surface, resulting in a function representing the distance from a sphere
around the origin with radius r:

dsphere(p, r) = |p| − r (4.1)
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Figure 4.4: A sphere, as described by equation (4.1).

4.3.2 Torus

To derive the distance from a torus, we again start with the degenerate case:
The case of a circle. For a circle with radius r1 lying in the xz-plane, the distance
is easily derived via Pythagoras’ theorem: The distance on the plane is simply
the absolute value of distance from the origin minus the radius (A point with
offset in 2D, if you will), and taking the position py over the plane into account,
this gives a distance from a circle. By offsetting by radius r2 from this circle
and simplifying, we obtain a distance equation for a torus:

dtorus(p, r1, r2) =

√
(
√
p2
x + p2

z − r1)2 + p2
y − r2 (4.2)

Figure 4.5: A torus, as described by equation (4.2).
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4.3.3 Cylinder

To determine the distance from a cylinder, it is best to first consider the case of
an infinitely long cylinder around one of the coordinate axes. In this section, as
well as in DFModel, the y-axis is used - different orientations can be obtained
by rotation. Again, starting with the degenerate case, the distance of a point
from the y-axis is simply the length of the position vectors xz-component. From
this, offsetting gives the distance from the infinitely long cylinder around the
y-axis. By using CSG operations, we can now cut parts of the cylinder off by
intersecting it and an infinite y-slab, resulting in a finite y-oriented cylinder
with radius r and height h:

dcylinder(p, r, h) = max(
√
p2
x + p2

z − r, |py| −
h

2
) (4.3)

Figure 4.6: A cylinder, as described by equation (4.3).

Note that this is a distance estimate: As previously mentioned, the CSG in-
tersection operation does not necessarily yield exact results, but since it never
causes distance overestimation, this is acceptable.

4.3.4 Cone

A cone can be thought of as a cylinder for which the radius slowly decreases
towards one end. Starting from this, the radius of a cone around the y-axis with
opening angle θ at height py can be calculated, yielding r = |py| · tan(θ). Using
this, we can determine the length of the hypotenuse of the triangle spanned by
the cones side, the line parallel to the xz-plane from the cone to P, and the line
from P orthogonal to the cones side (i.e. the line of minimal length from P to
the cone). Trigonometric identities and simplification then give the distance of
P from the infinite cone. As it is advantageous from a user-interface perspective
to have an input for base radius and height of cone instead of opening angle,
DFModel calculates θ from these as θ = atan( rh ). To make the cone finite, it is
again intersected with an y-oriented infinite slab of height h.
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θ = atan(
r

h
)

dcone(p, r, h) = max(
√
p2
x + p2

z · cos(θ)− |py| · sin(θ), py − h,−py) (4.4)

Figure 4.7: A cone, as described by equation (4.4).

As with the cylinder, the intersection makes this function return a distance
estimate rather than an exact distance.

4.3.5 Box

In the previous sections, we have used axis-oriented slabs to restrict the height
of various shapes. Simply intersecting 3 of these slabs yields a box that is finite
in all directions, with sides parallel to the axial planes. Like this, we can easily
create a box with side lengths s = (sx, sy, sz):

dbox(p, s) = max(|px| −
sx
2
, |py| −

sy
2
, |pz| −

sz
2

) (4.5)
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Figure 4.8: A box, as described by equation (4.5).

This is again and perhaps most obviously a distance estimate, which becomes
obvious when looking at a point on the line away from the center of a cube with
side length through one of the cubes corners C: Here, the minimum distance
would be |C − P |, which is obviously a bigger distance than the result of the
distance function at this point, |cx − px|. As this is an overestimate, this is
not a problem for sphere tracing itself, though it does result in problems when
using offsetting techniques: Instead of the “rounded cube” one would expect if
offsetting was working correctly, the result of adding a distance offset is simply
a scaled-up version of the cube, still with sharp edges (Compare figure 2.14 for
an illustration of this effect).

4.3.6 Menger sponge

In addition to basic primitives, DFModel allows for the creation of menger
sponge shapes with a selectable number of iterations.

To create a menger sponge fractal, we again turn to constructive solid geometry.
We start out with a box as the base shape. From this box, we subtract a “cross”
shape, with the struts making up the cross infinitely repeated in all directions.
By repeatedly scaling down (To a third of its original size) and subtracting this
infinitely repeated cross, we obtain a menger sponge fractal.

As an example, for a menger sponge with side length 1 and 2 iterations deep
( indicates the unbound position parameter for the partially applied distance
functions):

dcross(p, s) = min( dbox(p · · · , (1, 1

3
,

1

3
)),

dbox(p · · · , (1

3
, 1,

1

3
)), (4.6)

dbox(p · · · , (1

3
,

1

3
, 1)) ) · 1

s
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d2menger(p) = max( dbox(p, (1, 1, 1)),

drepeat(p,−dcross( , 1), (1, 1, 1)), (4.7)

drepeat(p,−dcross( , 3), (
1

3
,

1

3
,

1

3
)) )

Figure 4.9: A menger sponge, as described by equation (4.7).

4.4 CSG

DFModel implements all the basic constructive solid geometry operations, as
described in the CSG section of this thesis: Union, intersection and difference.
This allows the user to create shapes that are a combination of the aforemen-
tioned primitives. The default operation is the CSG union - all nodes that are
on the same level of the model tree are combined using this operation.

4.5 Transforms

DFModel implements all the transforms mentioned in the introductory section.
For composition of basic primitives relative to each other, rigid body transfor-
mations allow for rotation and translation. Additionally, twisting, blending,
and a “turnaround” operator are implemented. For the operators with best
Lipschitz constant L > 1, no automatic reduction of step size is implemented -
instead, the user is provided with a slider that can be used to adjust the step
size multiplier by hand.

The turnaround operator is simply a bend of the positive-x part of the xz plane
onto the negative-x part of the same plane, mapping x values of same absolute
value to each other.
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4.6 Materials

To add surface detail to objects, DFModel implements a material system. The
materials panel allows the user to create new materials, to name them and to
change their diffuse and specular colours. Additionally, it allows for the loading
of images, which can then be set as the materials texture - changing the diffuse
colour - or as the materials displacement map - adding “real” surface detail to
the objects when applied - and for changing the amount of displacement when
using a displacement map.

The materials can be applied to any shape node in the scene. The shape - and
in general, parts of the scene created from it via constructive solid geometry -
will then be coloured according to the colours defined in the material. When a
texture or displacement map is used, the texel to be read is determined using
the base shapes natural parametrization. Reducing the step size to make the
amount of displacement generated through displacement map and amount not
create any artifacts is again left to the user.

4.7 Explicit distance fields

To allow for the import of models created in other applications, DFModel con-
tains facilities for the ray marching of explicit distance fields, i.e. distance fields
given as distances at discrete points on a grid in space, with interpolation used
in between. The support for these is, however, relatively rudimentary.

5 Requirements

The major challenge in modern software engineering is that the future can not
be predicted – thus, every design decision in creating software has to be carefully
weighed. Defining the requirements the software needs to fulfill is the first and a
very important step in this process. This section will describe the shortcomings
of DFModel that this thesis is trying to address and outline the requirements
for fixing these shortcomings.

5.1 Save format

A modeling tool is a tool for creating scenes or objects. Tools like these are
rarely made to stand on their own: Usually, they are used to create models
or entire scenes which are then used in other tools: They might be combined
with other 3D objects created in other tools, animated, and eventually rendered
to create images or movies. For this, a good save format is crucial – but a
good save format is not only necessary for communicating with external tools,
but also for internal use: Without a good save format, the user cannot easily
interrupt the modeling session or exchange work-in-progress models with other
users of the program. While DFModel did provide facilities for saving, they were
very rudimentary (Consisting of simply writing the representation of the scene
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graph to disk using the QT tool kits built in serialization facilities) and entirely
inadequate for either scenario for various reasons. The following sections will
explain the design considerations that led to the creation of DFModels new save
format.

5.1.1 Machine independence

A good save format must be entirely machine independent: Saving or loading
the same thing on two different computers must always result in the same thing
happening, even when the computers are using different operating systems or
even machine architectures. If this is not the case, then the save format cannot
be trusted to load properly after a saved file has been transferred to a machine
different from the one it has been created on – collaboration between different
users becomes, in effect, impossible.

5.1.2 Ease of parsing

As other tools might want to parse the save files or at least parts thereof –
primarily the parts relating to the scene graph – having a save format that is
easy for third party tools to parse and for which a parser or a simple tool for
transforming the format to a different tools input format can easily be written
is very important. DFModels old save format, being essentially a binary dump
of data, was neither easy to parse, nor was it easy for a human to see how a
parser could be written without combing through the saving-related parts of
DFModels source code.

5.1.3 Extensibility

The current state of DFModel is certainly not a state in which it will remain
forever: There are many shapes, transformations and other kinds of possible
scene graph nodes that are not currently implemented in the modeling tool
which might be interesting to implement in the future. The save format needs
to accommodate for this by being extensible – adding new types of data must
be easily possible.

5.1.4 Forward compatibility

DFModel is a tool that is still in active development, and distance function
aided modeling is a field in which there is still much research happening. It is
not expected that a user will, at all times, have the newest version of DFModel,
with all the newest features, especially if one user has a development version
with experimental features. Thus, an important feature for the save format is
forward compatibility: When new versions of DFModel are created, old version
should still be able to handle save files generated by the new version, falling
back to defaults and failing gracefully where it cannot be avoided.
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5.1.5 Backward compatibility

The same goes, of course, for newer versions of DFModel: Newer versions of
DFModel should always be able to open files created with older versions. Im-
plemented features should always be a superset, so that older saved files can
always be opened properly. This is especially important in a scientific setting:
Without backward compatibility, revisiting old data at a later time is not easily
possible.

5.2 More flexibility in modeling

While the selection of basic shapes offered by DFModel was already adequate
for basic modeling, having more base shapes to choose from improves flexi-
bility in modeling, especially when the additional shapes would be very hard
or impossible to imitate using the currently implemented shapes. Specifically,
DFModel was lacking in “organic-looking” shapes without creases and hard cor-
ners (Something which is hard to create using only basic geometric shapes and
constructive solid geometry). A shape with a softer look would thus greatly
broaden the modeling possibilities offered by the modeling tool. Additionally,
soft-edged versions of the basic primitives, where possible, would certainly be
helpful.

Another thing that is sometimes used in modeling with implicit functions is
a “hyperize” operator: This operator takes the domain and exponentiates the
coordinates, essentially “compressing” or “flattening” the shape in the direction
of the coordinate axis. Such an operator, definitely useful for modeling, would
be a good addition to the modeling tool.

Finally, while DFModel did provide a way to add surface detail via displacement
mapping, another tool to step in where displacement mapping fails would clearly
be useful, since many of the basic shapes and nearly all combined objects (Any
object generated using CSG intersection and any object for which the distance
given is an estimate rather than an exact value) do not lend themselves to
having displacement maps applied. This additional tool should be, if possible,
entirely procedural, flexible enough to generate surface detail that is interesting
and varied, and – since modeling is an interactive process – fast to evaluate.

5.3 Tools for analysis

When modeling with distance functions, it is often interesting to take a closer
look at what is happening “under the hood”: To gain insight into the exact
composition of the distance function or to see what the rendering performance
for the field currently in use is. With slice planes and an explicit distance func-
tion export function, DFModel did already have tools for the former task. Tools
for performance analysis, however, were lacking: The only thing implemented
towards that end was a plain frames-per-second-counter.

To make performance analysis more viable, actually forcing the application to
redraw the main scene view as fast as the graphics processing unit allows it to
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would have to be implemented. Since performance often depends on the view
of the scene, saving this view would be necessary (Something which DFModels
old save format did not do), and since the performance strongly depends on the
size of the image being rendered, some way to find out and set this size would
be necessary. Additionally, for instant visual performance feedback, a way to
animate the main view would be very useful – that way, performance problems
would become visible as “stuttering” as soon as the frame rate drops below real
time speed.

5.4 Visual improvements

While the basic sphere tracing algorithm outlined in this document produces
good-looking and correct renderings, it has one obvious visual and technical
drawback: The edges of geometry are not anti-aliased at all, and especially
long edges often end up looking terribly jaggy. A way to anti-alias these edges
would make the objects much more pleasant to look at and result in a look
that is closer to what a user expects of a modern 3D application. As the
rendering algorithm runs entirely in the fragment shader and only one quad
is ever rasterized, naively turning on multi-sampling will not improve visual
quality. The implementation of a cone-tracing based technique as introduced
in [Har96] or a generic approximate image space post-processing technique is
necessary to actually anti-alias the scene.

6 Implementation in DFModel

This section will explain the implementation of the requirements given above,
and the choices made in the implementation, the reasons for these choices and
their implications.

6.1 Save format

Changing the save format was the first change implemented. After some de-
liberation, YAML (“YAML ain’t markup language”) was chosen as the base
format, for various reasons:

� The basic structural objects of YAML are lists and hashes. This maps very
well to how DFModel represents scenes: Every node has a list of children
and a set of properties. The result is a textual representation of the scene
as a document that is relatively readable even with zero knowledge of
DFModels functionality.

� The availability of robust and well-tested YAML parsing libraries with
bindings for all major languages means that a parser for a YAML based
format can be implemented with relative ease even within an existing
program.
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� As YAML is designed as a format for exchanging data between multiple
machines, common pitfalls such as encoding problems and problems with
word length and floating point representations are easily avoided simply
by using a well-tested parsing library.

The actual format consists of a main list containing format version, list of tex-
tures, list of materials with properties, the scene tree, and finally global camera
and rendering properties. This specific structure of data and parsing provides
multiple advantages:

� The version number as the first item allows for the easy detection of legacy
files, which can then be treated in a specific way should this ever turn out
to be necessary. Thus, backward compatibility can be ensured even if
the structure of the save format needs to be changed in the future to
accommodate unforeseen new requirements.

� The format is laid out in such a way that at the time an object is en-
countered in the parsing process, all objects required for its creation are
already present (i.e., have been previously encountered). This enables
simple single pass parsing – creating a scene from the file description is no
different, from the programs perspective, than a user creating the scene
by hand. As all the facilities for this will generally already be present
in a GUI-based application, minimal structural change is necessary for
implementing loading the format.

The “libyaml” library, a library with a simple C interface, was chosen to provide
parsing. During parsing, errors are kept track of. All errors that are merely
semantic (i.e. all errors that stem only from invalid data and not from broken
document structure) are treated as non-fatal – parsing continues, and when
returning control to the user, a warning and a list of errors encountered during
loading is presented. When a structural error is encountered, parsing is stopped,
and the partial loading result is displayed to the user, along with a warning.
This robustness enables the maximum amount of forward compatibility that
can be provided: Any non-structural changes – such as adding more objects to
the scene, or more properties to an object – will only result in that part of the
scene not being loaded, while the rest is loaded correctly.

An example of a simple scene stored using the save format can be found in
Appendix B on page 56.

6.2 Additional shapes

As discussed above, the possible shapes that can be created easily by a modeling
tool are determined in part by what base shapes it offers a user. To extend the
repository of shapes available in DFModel, two kinds of shapes were chosen:
Lp-functions (generalized distance functions) and blobby objects.
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6.2.1 Generalized distance functions

Generalized distance functions (Or “Lp norm functions”), introduced in [AC99],
provide a way to easily model soft or sharp-edged symmetric convex polyhedra.
A generalized distance function is defined as the set of points that have the
smallest distance to a given set of base points under some Lp - norm. They are
a generalization of simple loci, the set of points that have the same distance
from a single point (Such as a sphere or a cube).

dgdf(p) = (

r∑
i=1

|p · ni|v)
1
v (6.1)

Here, {n1, ..., nr} is a set of vectors as specified in [AC99] and v a real number
with v ≥ 1. Akleman showed in [AC99] that this function is a distance function
which does not overestimate distances.

In addition to implementing these generalized distance functions, our implemen-
tation provides a way to blend a generalized distance function with another, both
multiplied with a scaling factor, before the radius is subtracted. Subsets of the
vectors from [AC99] can be selected for use, the radius can be varied, and the
exponent can be set (Or set to be infinite, to give the maximum norm). Using
this, the user can create symmetric polyhedra as well as stellated-looking soft
and sharp geometry.

Figure 6.1: Various generalized distance functions, with maximum norm on the left
and L20 norm on the right, directly as in equation (6.1) on top and blended with a
negative generalized distance function on bottom.
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6.2.2 Blobby objects

Blobby objects (Or “Metaballs”) are a kind of implicit surface. They can be
thought of as points in space which exhibit a certain influence which decreases
as the distance from the point increases. By summing the influences of all
center-points at a given point in space, we get a function that implies a smooth,
organic-looking surface.

When choosing an influence function for using metaballs with sphere tracing,
multiple things have to be considered: That the blobby object distance function
must not overestimate the distance to the isosurface, that the function can be
evaluated quickly enough for interactive performance, and that the function
results in satisfyingly smooth transitions between balls.

In balancing these requirements, we chose the following function as the metaball
distance function:

dmeta(p) = R−
∑
i∈balls

(1.0−H(r − 0.5)) · (r2 − r + 0.25) (6.2)

(Where r = ((p− ci) · (p− ci)))

Figure 6.2: Blobby object, as described by equation (6.2), with 100 balls randomly
placed in a 3x3x3 box.

R is the “radius” of the blobby object and ci are vectors pointing to the centers of
the balls. H(x) denotes the Heaviside step function. In addition to this, spherical
bounding geometry with radius 0.75 is generated for every ball – the end result is
the maximum distance from either the blobby object or the bounding geometry.

This function has multiple properties which make it a good choice:

� The function has finite support: As the squared distance from the center
(p · ci) goes towards 0.5, dmeta disappears.
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� The finite support allows the easy use of bounding geometry, which speeds
up the approach towards the blobby object significantly.

� The function is very simple and fast to evaluate even when taking bound-
ing geometry into account, making it suitable for rendering relatively large
amounts of metaballs directly (i.e. without discretizing the function into
a 3D texture beforehand). In our tests, rendering up to 250 metaballs
spread in a 5x5x5 cube was possible at interactive frame rates (5 to 6
frames per second) on an NVidia GTX 580 GPU.

For a single ball, it is easy to see that distance overestimation cannot happen:
In that case, dmeta grows slower than the distance from the surface everywhere.
When, however, multiple balls are very close together, distance overestimation
is possible: In this case, the user must adjust the step size downwards to com-
pensate. This problem becomes evident when the blobby object is used in a
CSG difference operation: As the ray must now pass through the inside of the
object, where the density is high, the returned distance is often incorrectly high.

In our implementation, the balls are placed randomly within a specified rectan-
gular area. This is good for quickly modeling liquid-like objects.

Figure 6.3: A fountain object, modeled with blobby objects for creating the liquid-like
substances.
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6.3 Additional transformations

6.3.1 Hyperize

A common operation when working with implicit functions is exponentiating
the space the function is being evaluated in. This operation was implemented
in DFModel as a transformation.

dhyper(p, d, v) = d(p.xv, p.yv, p.zv) (6.3)

As the transformation is not Lipschitz-continuous, the user has to reduce the
step size when it is part of the scene in order to make sure that no part of the
object is missed.

6.4 Anti-aliasing

Naively ray-marching distance functions with a single ray per pixel results in
jaggy, harsh borders between objects, other objects and the background, and
creates staircase artifacts where long edges are slightly rotated in respect to
the screen axes. While techniques to directly integrate anti-aliasing in the ray-
marching process exist [Har96], they complicate the rendering algorithm and do
not handle approximate distance bounds well.

Fast Approximate Anti-aliasing (FXAA) [Lot11] provides an easy solution to
these problems. FXAA, developed by NVidia, is a single pass screen space post-
processing algorithm that performs anti-aliasing based only on detecting edges
by comparing pixel luma values, classifying these edges, detecting edge ends,
and then filtering the image accordingly, essentially “blurring” edges where nec-
essary. FXAA handles jaggy-edge artifacts, especially on long, straight edges,
relatively well, and is, as the name implies, very fast. While it does not com-
pute an exact anti-aliased image, it produces results that look good in little
time, and is very easy to integrate into already existing rendering pipelines –
in practice, FXAA is implemented as a single fragment shader that takes a
nonlinear-rgb-and-luma texture as input, and produces the anti-aliased image
as output.

As DFModel was already rendering to an off-screen buffer, adding a post-
processing step was relatively simple and thus FXAA was the obvious choice.
After adding luma output to the renderer, we added FXAA as a post-processing
pass between rendering the scene and displaying the final output image.
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Figure 6.4: With FXAA turned off, jaggy edges are clearly visible. (Detail view is
scaled up 400%)
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Figure 6.5: With FXAA on, jaggy edges are blurred and appear much smoother.
(Detail view is scaled up 400%)

6.5 Performance analysis tools

A new “Analysis” menu was added to DFModel to facilitate the performance
analysis of different distance functions.

� An “Automatic redraw” setting, which tells the program to re-draw the
screen as fast as it can, making the frame rate indicator significantly more
useful, was added.

� Additionally, an “Auto-rotate” setting telling the program to automati-
cally rotate the camera around the object, was added. This is useful for
frame rate checking on the one hand (A non-realtime frame-rate becomes
evident as stuttering) and for presenting objects to people on the other.

� Finally, a setting for turning the fast approximate anti-aliasing off and on
was added, to be able to compare performance and visual appeal with and
without anti-aliasing.

Since the performance of the rendering algorithm depends on the size of the
rendered image, giving that size is important when measuring performance. To
this end, a display showing the current OpenGL viewport size was added to the
status bar.

41



7 Surface detail using noise

7.1 Motivation

Real world surfaces are often not perfectly flat, but exhibit roughness on the mi-
croscopic as well as macroscopic level. While microscopic roughness can be ad-
equately modeled using bidirectional reflectance distribution functions, macro-
scopic roughness – features big enough to modify a shapes outline – are not as
easy to integrate into the rendering process.

For distance fields, such features can be applied to a surface by applying dis-
placement mapping to the surface. This approach has several disadvantages:

� The displacement map is a texture with finite resolution – detail is limited,
and eventually it begins to repeat.

� A parametrization of the surface is required to actually apply the map –
finding a good parametrization is not a problem that is easily solved for
all surfaces.

� Special care has to be taken to make sure that hard edges to not cause
discontinuities in the displacement.

Ideally, the displacement should be calculated procedurally, allowing for an
unlimited amount of non-repetitive surface detail. Additionally, applying a
three-dimensional procedural texture defined in space instead of applying a two-
dimensional displacement parametrized over the surface effectively negates the
need for a surface parametrization, allowing for texturing even when a good
parametrization is hard to obtain, and takes care of discontinuities at sharp
edges. Noise functions, introduced by Perlin [Per02], provide a way to proce-
durally generate interesting patterns for colour or displacement textures. Most
recent procedural noise generation methods are based on spot noise in one way
or another: Here, a large number of kernels randomly positioned in space are
summed to generate noise. [LLC+10]

Figure 7.1: Icosahedron with procedural 3D displacement applied.

For ray marching, calculating such noise directly when it is needed seems like
the ideal solution. For interactive applications, there are, however, problems
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that need to be addressed: Even with optimizations such as not calculating
displacement until the ray-marching process has reached the coarse shell of the
object to be rendered, many interesting displacement functions are too slow
to be evaluated directly during the rendering process while still maintaining
real-time or at least interactive performance.

7.2 Runtime caching

Storing displacement values explicitly in a three-dimensional texture would be
possible as long as the desired resolution and extent of the texture are not too
high, but as the resolution rises, the memory requirements quickly become too
much to handle with present day graphics hardware. Additionally, the pre-
calculation step involved makes the displacement static – this is not optimal in
a modeling situation, where the user might want to change parameters interac-
tively.

To tackle this problem, we propose a cache mechanism based on parallel spatial
hashing which runs directly on the GPU and is equivalent to storing displace-
ment values in a sparse grid around the object being textured. Using our cache,
displacement values that have been calculated in the previous frames can be
reused during rendering. When the user modifies the objects being textured or
changes the perspective, only new displacement values need to be calculated –
where possible, previously cached values can still be used.

Figure 7.2: A completely procedurally generated stone well rendered using our cache.
Without the cache, the scene renders at 10 frames per second – turning on the cache
nearly doubles this frame rate.
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7.3 Mechanism

Our caching mechanism divides the space into cells and then uses three different
3D textures to efficiently store and retrieve values. A hash texture H stores
frame, age and storage location for each stored cell. The actual data value to
be cached and the position of the data value in world space are stored in a pool
texture D and a cache texture C, respectively. The pool texture is twice the size
of the cache on each axis, allowing us to leverage the GPUs built in trilinear
interpolation to retrieve interpolated values inside cache cells by simply storing
the data values at the corners of the cell. Thanks to OpenGL 4.2 atomic image
operations, we were able to implement the caching scheme entirely on the GPU,
avoiding costly CPU-GPU communication.

The caching mechanism inserts in parallel and executes in three steps for each
frame:

In a first pass, the image is rendered. Cached values, retrieved from the pool,
which is bound as a texture with interpolation enabled, are used for the dis-
placement wherever they are available and necessary – displacement is only done
when “close enough” to the surface (i.e. inside the surfaces coarse shell). For
each pixel, the last cache miss position encountered during rendering is stored.
A second pass reserves slots in a hash table for each pixel which has encountered
a cache miss. Finally, a third pass generates and stores values in the pool (now
bound as an OpenGL 4.2 image texture) and stores locations in the cache.

Figure 7.3: The first frames after a cache clear for a displaced and coloured arch.
Cache misses are marked red. The untextured base model is shown on the very right.

For the hashing, a scheme inspired by cuckoo hashing is used. The cuckoo
hashing scheme ensures a bias towards and better retrieval times for younger
keys, which are more likely to be useful in the next frame. This is achieved
by simply blindly evicting keys when a new key is inserted in their place and
re-inserting the evicted keys at their next probing location according to the
hash function. To make sure new keys are not evicted right away, fresh keys are
exempted from eviction. When a key has been evicted a set number of times,
it is finally deleted from the hash.

As the hash function, we use a coherent hash function proposed by Garćıa et.
al.:

hi(k) = (k +O[i]) mod N (7.1)
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Here, O is a table of precomputed random translations and N is the size of
the hash table. This hash function is applied independently to the x, y and z
components of the cell position. The coherent hashing function provides better
access performance than a randomizing function would. [GLHL11]

8 Discussion

8.1 Save format improvements

The new save format provides adequate saving facilities and was used in de-
veloping the rest of the improvements to DFModel – saving test scenes and
re-loading them after making changes to the program as well as exchanging
scenes with other people worked as intended. Extending the format also proved
to be as easy as intended when the time came to add more shapes.

A downside of the format is that having textures and materials with the same
name is impossible. In actual use, this has not been a problem. The format is
also not as accessible to humans as it could be: Things unrelated to the blob tree
are stored without label, making an intuitive interpretation impossible. The
blob tree itself, which represents the scene, is easy to interpret even without
knowledge of the exact structure of DFModels code.

8.2 Modeling improvements

The addition of two additional primitives and a new operator allows for modeling
of objects that DFModel was previously unable to model, especially objects with
rounded edges and organic looking objects, such as the cup in the scene shown
in the abstract of this thesis or the fountain shown in figure 6.3.

There are, however, still more things that are hard to do even with the addi-
tional shapes: For one, the metaballs cannot currently be manually positioned,
preventing any sophisticated blobby object modeling – while the random posi-
tioning is adequate for basic fluid modeling, manual placing would allow a wider
range of applications.

There are also implementation problems with the generalized distance functions:
Some configurations with high non-infinite exponents will lead to numerical
instabilities which break rendering.
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Figure 8.1: A well, modeled using DFModel. The base of the well is modeled with
generalized distance functions.

8.3 Noise cache

The noise cache was tested with a rotating object (In our tests, an icosahe-
dron) to simulate the effect of a user changing the perspective, and with various
implicit shapes whose parameters were animated to simulate a user changing
parameters in a modeling process. The caching showed a clear speedup of up
to two times compared to the the non-cached version, after a short initial pe-
riod during which the cache fills up and the speedup is smaller than one. The
maximum speedup is achieved when the changes made are very small, which
is exactly the case in modeling: The highest performance is required for very
small, precise adjustments (Which would be very hard to do well at less-than-
interactive frame rates). All results were obtained on an NVidia GTX 470
graphics card running driver version 285.62, at a resolution of 800x800 pixels.

To decide which maximum age leads to the best performance, we evaluated
the number of deletions and the rendering time for various maximum ages.
Maximum age 4 was chosen as the optimal age for removing entries that are not
needed anymore and retaining entries that are likely to be useful again.
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Figure 8.2: Effect of the maximum age for an icosahedron rotating at 2 radians per
second.

To evaluate whether the cache policy results in the desired bias towards younger
keys, histograms of key age averaged over some period of time were created. As
figure 8.3 shows, there is a clear bias towards younger keys as the cache fills up.
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Figure 8.3: Histograms of ages for an icosahedron rotating at 2 radians per second.

The precision of the cache was evaluated by comparing cached and non-cached
rendering. Since the cached function isn’t, in general, limited in resolution,
caching causes small deviations from the correct rendering. To mitigate this,
the user can adjust the cache resolution to increase the precision until it is
satisfactory. Another problem is visual “popping” caused by the deletion and
insertion of keys when a cell switches between exact and cached version, which
becomes noticeable when the cache is very small. To prevent this in practical
applications without artificially limiting the functions that can be used to lin-
early interpolated functions, a tool using the cache could use the cache only
during modification of perspective or parameters and produce a final precise
rendering without the cache while nothing is being changed.
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Figure 8.4: Differences between exact rendering (upper inset) and rendering created
using our cache (below).

Finally, we performed interaction tests to evaluate the usefulness of the cache
in modeling situations. In these demonstrations, a textured stone arch – which
renders at 11 frames per second without the cache – could be modified at 15 to
27 frames per second, depending on the magnitude of the changes.

Figure 8.5: Editing of a model: The user first increases the arch radius and then lowers
the base. Cache misses are marked red. Note how big parts of the cache remain useful
despite the user changing the base model.
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Figure 8.6: Cache misses and rendering time for icosahedron as a function of rotation
speed – faster rotation produces more misses and makes the cache less useful.

Figure 8.7: Apples-and-cheese scene rendered using our cache for procedurally calcu-
lated colour as well as displacement.

9 Summary and outlook

After explaining the mathematical foundations behind implicit surfaces and dis-
tance functions as well as the Lipschitz condition, this thesis showed algorithms
for rendering and shading them. It then showed ways in which distance functions
can be transformed, combined and modified to create new distance functions
and what needs to be done to ensure that the Lipschitz condition still holds
after the transformation.

Next, this thesis presented previous work in procedural modeling in general and
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specifically previous work in implicit modeling with signed distance functions.
The thesis then focused on the modeling tool DFModel, giving an overview over
its structure, its user interface, its features and the distance functions it offers
for modeling objects.

The thesis then showed various issues with DFModel and what the requirements
for fixes to these problems were, and how DFModel could be improved in various
ways. It went on to show how these fixes and improvements were implemented
throughout the course of this thesis.

In addition to this, the thesis then explained the advantages of adding surface
detail using 3D noise functions and presented a runtime caching mechanism for
caching such procedural textures in space with trilinear interpolation. It then
evaluated its suitability for caching noise functions in procedural modeling.

9.1 Future work

While DFModel has already been greatly improved throughout the course of
this thesis, further improvements would be possible: It would be possible to
implement more distance functions, such as superquadrics, and a more involved
lighting and material system supporting more complex things than simple phong
illumination. The currently implemented functions could also be made more
flexible – the blobby objects, for example, could be provided with a way to
position them manually instead of randomly.

For the runtime cache, various uses – like caching not only displacement, but
also colour or various other material properties – could be evaluated, inside
DFModel or other tools.

9.2 Final remarks

Modeling with implicit surfaces, while not as popular for general purpose mod-
eling as “traditional” polygonal modeling approaches, is similarly powerful and
has various advantages. With modern GPUs, the interactive direct rendering of
distance functions is not a problem. As GPUs become more and more general
purpose, it will be possible to run more complex algorithms on them – pos-
sibly enabling the development and the transfer of more involved procedural
modeling techniques into mainstream use, as the demand for details outstrips
the available memory. It is possible that through this, distance function based
implicit modeling will find practical applications in computer graphics: Time
will tell.
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Figure 9.1: A scene modeled procedurally using our distance function modeling tool,
using every feature available.
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Appendix A – Sphere tracing in GLSL

The following code is a simple implementation and line by line walk through
of a sphere tracer rendering a blobby objects scene in the OpenGL shading
language. The code is executed in a fragment shader – it is ran once for every
pixel that is drawn to the screen. To execute the code, a single quad is rendered
over the whole screen to execute the fragment shader for every pixel. For an
introduction to sphere tracing, see section 2.3. For the image this code renders,
see figure 4.3.

1 f l o a t scene ( vec3 pos ) {
2 f l o a t ball1 = 1.0/ length ( pos − vec3 ( −1 .5 , 0 . 0 , 4 . 0 ) ) ;
3 f l o a t ball2 = 1.0/ length ( pos − vec3 ( 1 . 0 , 1 . 5 , 5 . 0 ) ) ;
4 f l o a t ball3 = 1.0/ length ( pos − vec3 (3 . 0 , −2 .5 , 5 . 0 ) ) ;
5 re turn 1 . 0/ ( ball1+ball2+ball3 ) − 1 . 0 ;
6 }
7
8 void main ( ) {
9 vec3 ray = vec3 ( ( gl FragCoord . xy − vec2 ( 300 . 0 ) ) / 3 0 0 . 0 , 1 . 0 ) ;

10 ray = normal ize ( ray ) ;
11
12 i n t c = 0 ;
13 f l o a t dist = 1000 . 0 ;
14 vec3 pos = vec3 ( 0 . 0 ) ;
15
16 whi le ( c++ <= 500 && dist > 0 . 01 ) {
17 dist = scene ( pos ) ;
18 pos += dist * ray ;
19 }
20
21 vec3 d = vec3 ( 0 . 0 1 , 0 . 0 , 0 . 0 ) ;
22 vec3 n = normal ize ( vec3 (
23 scene ( pos + d . xyy ) − scene ( pos − d . xyy ) ,
24 scene ( pos + d . yxy ) − scene ( pos − d . yxy ) ,
25 scene ( pos + d . yxx ) − scene ( pos − d . yxx )
26 ) ) ;
27
28 i f ( c < 500) {
29 vec3 light = vec3 (4 . 0 , −2 .0 , 0 . 0 ) ;
30 vec3 tolight = normal ize ( light−pos ) ;
31 f l o a t diff = max( 0 . 0 , dot ( n , tolight ) ) ;
32 vec3 reflected = normal ize ( r e f l e c t ( tolight , n ) ) ;
33 f l o a t spec = max( 0 . 0 , pow( dot ( reflected , normal ize ( pos ) ) , 1 0 . 0 ) ) ;
34 vec3 colour = vec4 ( 0 . 5 , 0 . 2 , 0 . 9 , 1 . 0 ) ;
35 g l FragColor = vec4 ( diff +0.2)* colour+vec4 ( spec *0 . 6 ) ;
36 }
37 e l s e {
38 g l FragColor = vec4 (0) ;
39 }
40 }

Line 1 - 6: The scene definition: A blobby objects scene. Refer to section 6.2.2
of this thesis for an explanation of blobby objects.

Line 8: Entry point.

Line 9, 10: Ray casting. The ray is shot from an eye at the origin down the
positive Z axis.

Line 12 - 14: Variable initialization. c is the iteration counter, dist is the
current distance to the closest surface (Initialized to a value bigger than the
stop condition distance), pos is the current position in space (Initialized to the
eye position, the origin).
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Line 16: Rendering loop – Stop conditions. Stop either after 500 iterations, or
after the distance to the closest surface becomes smaller than some value (0.01).

Line 17: Rendering loop – Evaluate the distance function at the current posi-
tion. dist now contains the distance from pos to the closest surface.

Line 18: Rendering loop – Advance the position pos in the direction of ray by
the known safe distance dist.

Line 21 - 26: Approximate the normalized gradient of the distance function
using central differences.

Line 28: If the maximum iteration count (500) was not reached, the condition
causing the rendering to stop was going below the minimum distance – the ray
was a hit.

Line 29 - 35: Compute the pixels colour using the Phong illumination model
(See section 2.4 for an explanation of the Phong illumination model) and the
normal determined via central differences.

Line 38: If the ray did not hit, set the colour to black.

Appendix B – Save format example

The following is an example of the save format introduced in section 6.1. It
contains a version number, texture information (in the example, there are no
textures), material information, the scene tree and various pieces of user inter-
face layout, camera perspective and rendering-related information relevant only
to DFModel. The result of loading this scene into DFModel is shown after the
listing.

−−−
− 0 .3
− {}
− − − Name : Standard

Diffuse :
Red : 0
Green : 178
Blue : 255
Alpha : 255

Specular :
Red : 255
Green : 255
Blue : 255
Alpha : 102
Exponent : 128 .00

− Color Texture : <None>
Texture Scale :

X : 1 .00
Y : 1 .00

Displacement Map : <None>
Displacement Amount : 0 .10
Displacement Scale :

X : 1 .00
Y : 1 .00

− − Generic
− Distance field
− Children :
− − Sphere
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− Sphere 1
− Radius : 1 .00

Material : Standard
Offset :

X : 0 .00
Y : 0 .00

− − LightingNode
− Lighting
− Ambient R : 0 .00

Ambient G : 0 .00
Ambient B : 0 .00
Ambient Occlusion : 1 .00
Shadow Darkness : 0 .50
Soft Shadows : 0 .03
Specular Intensity : 0 .40
Specular Exponent : 128 .00
Skip Shadows & Shading : False
Children :
− − Generic
− Light 1
− Children : [ ]

− 100
− false
− 1
− 0 .5
− 0
− 0 .5
− 0 .5
− − − 0

− 0
− 0
− 45
− −20
− 30
− 50
− false
− false
− false

− − 0
− 0
− 0
− 0
− 0
− 30
− 50
− true
− true
− false

− − 0
− 0
− 0
− −90
− 0
− 30
− 50
− true
− false
− true

− − 0
− 0
− 0
− 0
− −90
− 30
− 50
− true
− false
− false

− − − 0
− false
− false

− − 1
− false
− false
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− − 2
− false
− false

− − 3
− false
− false

. . .
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