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Real-time synthesis of imagined speech processes
from minimally invasive recordings of neural
activity
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Speech neuroprosthetics aim to provide a natural communication channel to individuals who

are unable to speak due to physical or neurological impairments. Real-time synthesis of

acoustic speech directly from measured neural activity could enable natural conversations

and notably improve quality of life, particularly for individuals who have severely limited

means of communication. Recent advances in decoding approaches have led to high quality

reconstructions of acoustic speech from invasively measured neural activity. However, most

prior research utilizes data collected during open-loop experiments of articulated speech,

which might not directly translate to imagined speech processes. Here, we present an

approach that synthesizes audible speech in real-time for both imagined and whispered

speech conditions. Using a participant implanted with stereotactic depth electrodes, we were

able to reliably generate audible speech in real-time. The decoding models rely predominately

on frontal activity suggesting that speech processes have similar representations when

vocalized, whispered, or imagined. While reconstructed audio is not yet intelligible, our real-

time synthesis approach represents an essential step towards investigating how patients will

learn to operate a closed-loop speech neuroprosthesis based on imagined speech.
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Steady progress has been made in the field of
brain–computer interfaces in recent years1 and systems
allow paralyzed patients to control robotic arms2 or com-

puter cursors3 with high reliability and have been tested and used
by patients in their daily lives4,5. While such systems can greatly
increase the independence of disabled patients, they are currently
unable to provide a natural means of communication for patients
who are unable to speak. Recently, several studies have demon-
strated the ability to synthesize high-fidelity audio directly from
brain activity during audibly vocalized6,7 and silently mimed
speech8. These approaches are based on neural activity measured
directly on the cortical surface using electrocorticographic
(ECoG) electrode arrays. Studies employing intracortical micro-
arrays have presented similar success in the decoding of speech
processes9,10.

Despite the impressive reconstruction quality achieved by these
approaches, two major issues remain unaddressed in the current
literature: (1) all studies synthesizing speech from the neural
activity are based on open-loop experiments and apply the
decoding pipelines to these data in offline analyses. In particular,
decoding models based on artificial neural networks6,8,11 require
multiples of real-time processing for reliable decoding. (2) Recent
advances in speech decoding have been demonstrated on audibly
vocalized or silently mimed speech by individuals that have the
ability to speak. To reach the target population of patients that are
unable to speak, it is imperative to demonstrate efficacy in
decoding imagined or attempted speech.

These two issues have been investigated in separate studies.
Two studies by Moses et al.12,13 decoded neural activity into a
textual representation in real-time, but rely on produced or
perceived speech. Two studies by Martin et al.14,15 examine
imagined speech processes but are based on offline processing of
open-loop datasets. To date, the only research addressing both
issues is the landmark study that synthesized vowel sounds from a
patient with a neurotrophic electrode implanted into the motor
cortex16. However, this study did not attempt to synthesize
speech beyond basic vowel sounds.

Here, we show the feasibility of real-time synthesis of imagined
spoken words from neural recordings, thereby directly addressing
the two open challenges in the development of speech
neuroprosthetics.

Closed-loop synthesis. In this study with one participant (20
years old, female), we recorded intracranial neural activity during
speech processes using stereotactic electroencephalography
(sEEG) electrodes. The use of sEEG electrodes has several
advantages over other intracranial recording modalities, including
reduced surgical trauma and implications for long-term
implantation17.

Our experiment consisted of two stages: an open-loop stage for
training the decoding models, followed by a closed-loop stage where
whispered and imagined speech were respectively evaluated (Fig. 1).
In this context, an open-loop experiment refers to the collection of
data without immediate feedback provided by the neuroprosthesis.
In a closed-loop experiment, the neural data is analyzed and
decoded in real-time, and feedback is provided by the neuroprosth-
esis. The neuroprosthesis is thereby closing the loop.

For the open-loop stage, the participant was presented with a
single word on a monitor and instructed to speak the word aloud.
The intracranial neural activity and acoustic speech signal were
simultaneously recorded for a series of different words. These
synchronized data were used to train the decoding models for the
estimation of the acoustic speech waveform for the subsequent
closed-loop stage.

For the closed-loop stage, real-time acoustic feedback was
provided to the participant through our real-time synthesis
approach (Fig. 2), which was trained using data from the open-
loop stage. During the first closed-loop run, the participant was
instructed to produce whispered speech. For the second closed-
loop run, the participant was instructed to imagine producing the
prompted words without vocalizing or activating speech articu-
lators. As feedback was provided in real-time, any potential
acoustic contamination of the neural signals18 will not contribute
to the decoding performance.

Each run consisted of 100 Dutch words, which were displayed
for two seconds followed by a fixation cross for one second.
Words were drawn randomly from a phonetically balanced list of
250 words19.

Decoding approach. Our approach receives raw sEEG signals
and performs a real-time conversion to an acoustic speech signal,
which is provided as continuous auditory feedback to the user. In
this design, an auditory waveform is continuously produced,
independent of explicit detection of speech or silence onset.
When functioning as intended, the system will provide audible
feedback when brain activity patterns representing speech pro-
duction or imagery are detected and silence otherwise. This way,
no additional speech onset detection is necessary. Our approach
is implemented as a node-based framework that enables the
organization of individual processing steps as self-contained units
that can be assigned to a new process for parallel computing.
Figure 2 shows a schematic overview of our proposed closed-loop
synthesis approach for real-time speech decoding, summarized as
follows:

a. Neural signal acquisition: Invasive brain signals related to
speech processes are acquired directly from the brain
through implanted sEEG electrodes. An input node of the
system is connected to the amplifier through
LabStreamingLayer20 which serves as the middleware
between the recording setup and the decoding software.

b. Processing of neural signals: The multichannel neural
signals are processed to extract high-gamma power, which
correlates with ensemble spiking21 and contains highly
localized information about speech processes22,23. While
previous speech decoding studies11,24 have generally
considered a large temporal context, both before and after
speech production25, real-time processing cannot consider
neural data of temporal context after speech production to
avoid delayed feedback that would adversely impact the
natural speech production process26.

c. Decoding models: The decoding models assign vectors of
neural activity to classes of discretized audio spectrograms.
For this purpose, the audio spectrogram is mel-scaled27

using 40 triangular filter banks. In each spectral bin, the
signal energy is discretized into nine energy levels based on
the sigmoid function28. This quantization enables a high
resolution in the spectral range that contains the partici-
pant’s voice but also provides sufficient information to
reliably represent silence. Each of these nine energy levels
represents one of the target classes in the classification
approach. Regularized LDA-classifiers then predict the
energy level for each of these spectral bins. Thus, the system
consists of 40 LDA-classifiers that are trained on the open-
loop data from the first experimental run. This simple
classification scheme was selected to ensure the generated
output remains within typical boundaries of speech
production and is more robust against noise and outliers
in the neural data. To keep the dimensionality for this
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classification problem manageable, 150 features were
selected based on the correlations with the speech energy.

d. Auditory feedback: Generation of an audible speech
waveform is implemented via the Griffin–Lim algorithm29

which reconstructs the phase spectrogram iteratively. We

constrained the approximation to 8 iterations based on the
results of a prior study30. The reconstructed speech
waveform is presented to the participant as auditory
feedback over the integrated loudspeakers of a dedicated
research laptop.

Fig. 1 Overview of experimental design. The experiment begins with an open-loop run in which the participant reads a series of 100 words aloud while the
speech and brain activity are synchronously recorded. In the two subsequent closed-loop runs, the participant performs the same task while whispering
and imagining speech, respectively. For the closed-loop runs, real-time audible feedback of the neurally-decoded and synthesized speech is provided via
our system.

Fig. 2 Schematic overview of our proposed real-time synthesis approach. a Invasive brain signals are acquired through implanted sEEG electrodes. b
Multichannel signals are processed to extract the high-gamma power. c Linear decoding models are used to estimate a spectral representation (d) which is
synthesized into an audible speech waveform using the Griffin–Lim algorithm and presented to the patient as real-time auditory feedback.
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Results
Decoding performance in the audible open-loop experiment.
We first quantified the performance of the general decoding
concept on the data from the open-loop data run. The evaluation
was performed retrospectively as these data were collected for
model training for the closed-loop runs. We used ten-fold cross-
validation to reconstruct the complete speech spectrogram of the
entire open-loop run, including data from all trials and intertrial
intervals. Comparisons between speech spectrograms were
quantified by average Pearson correlation coefficient across all
frequency bins. We evaluated our output using the Pearson
correlation coefficient instead of measures of automatic intellig-
ibility, like the STOI31 or ESTOI32, as certain trials might not
satisfy the assumption of 400 ms of consecutive speech. Currently,
reconstructed speech is not intelligible. Figure 3a shows a com-
parison between the original and reconstructed spectrograms.
Examples have been selected based on the top five highest
Pearson correlation scores (left 0.89, others: 0.82) and are pre-
sented for visual inspection. Overall, we achieve an average cor-
relation of 0.62 ± 0.15 across all spectral bins (blue line, Fig. 3b).
As a baseline, we established a chance level (red line, Fig. 3b) by
artificially breaking the temporal alignment between neural
activity and acoustic speech and then retraining the classifiers
with this broken alignment: We split the acoustic data at a ran-
dom time point into two partitions and temporally swapped the
resulting partitions. We then retrained the entire decoding
pipeline using this new alignment, in which the neural data
should not contain any information about the misaligned audio.
This procedure provides a good estimation of chance-level
reconstruction results. We repeated this procedure 100 times
and compared the distribution of correlation coefficients with
those from the real data using Mann–Whitney U tests. The
proposed method significantly outperforms the baseline in every
frequency bin (Mann–Whitney U test, P < 0.001, n1= 10 and
n2= 100, Bonferroni corrected). While our decoding approach
achieves mean correlation scores above 0.6 for the majority of
frequencies involved in human speech, the mean chance level
remains consistent around 0.1.

Closed-loop synthesis of whispered speech. For the closed-loop
runs, the whispered speech condition provides an initial feasibility
check as no audible vocalization is present, ensuring that the
decoding approach is not impacted by acoustic speech
contamination18.

During the experimental run, the closed-loop decoder
synthesized the measured neural activity into an acoustic
waveform that is presented to the patient in real-time and
recorded for offline evaluation. Figure 4a shows decoded audio
waveforms for five selected trials. These examples indicate that
the closed-loop decoder was capable of reconstructing audible
audio with onset/offset timings that are reliably gated by neural
correlates of whispered speech processes and are characteristic of
natural speech.

In contrast to the open-loop run, the patient only produced a
barely perceptible vocalization in the whispered run, which was
below the sensitivity of the microphone. Therefore no reference is
available for the comparison of synthesized and actual speech.
However, 73 random target words appeared in both the open-
loop and whispered runs and therefore the actual articulations are
available for comparison, although not precisely time-aligned
between runs. In order to quantify the decoding performance, we
examined the Pearson correlation coefficient between decoding
results from whispered trials and time-warped reference articula-
tions: for each word, we optimized the temporal alignment by
warping the mel-scaled spectral representation of the reference
articulation to the decoded spectral coefficients using a dynamic-
time warping (DTW) algorithm33. Based on these alignments,
Pearson correlation coefficients were computed. To establish a
chance level, we applied our decoding approach to randomly
selected 2-s segments of neural data acquired during a separate
session of nonspeech tasks (grasping and eye fixation) performed
by the participant. This procedure was repeated 1000 times to
create a reliable distribution. Our approach achieved median
DTW correlations of 0.64 ± 0.15 and 0.17 ± 0.23 for the chance
level (Fig. 4c). Mean correlation coefficients across all spectral
bins are significantly higher than the chance level (P < 0.001,
Mann–Whitney U test, n1= 73 and n2= 1000). These correlation

Fig. 3 Decoding performance of the proposed method on the open-loop data from the audible speech experiment. The spectrogram was reconstructed
using ten-fold cross-validation. a Visual comparison of original and reconstructed spectrograms. b Correlation coefficients across all spectral bins for our
approach (blue, n1= 10) compared to a randomized baseline (red, n2= 100) generated by breaking the temporal alignment between the brain signals and
speech recordings. Shaded areas represent standard deviation.
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coefficients are not directly comparable to those shown in Fig. 3b,
due to the optimal temporal alignment imposed by the DTW. In
an additional analysis, we investigated the proportion of decoded
speech during trials and speechless intertrial intervals (Fig. 4d).
We utilized a voice activity detection (VAD) algorithm34 that
automatically annotates speech segments based on energy levels
in an acoustic waveform. Our approach reliably decoded and
synthesized speech during the majority of whisper trials and not
during the speechless intertrial intervals. Only a small proportion
of speech was decoded and synthesized during speechless
intertrial intervals. Despite the fact that the closed-loop decoder
is not trained on whispered speech processes, the generated
acoustic waveforms demonstrate successful decoding, which is in
accordance with prior findings regarding the transferability of
decoding models towards mimed speech8. However, the synthesis
performance is worse than the performance on audible speech
processes—likely due to the absence of actual phonation, which
was also hypothesized in the previous work8.

Based on our causal design, the decoding results do not rely on
perceived auditory feedback of vocalizations and are based on
neural processes underlying speech production.

Closed-loop synthesis of imagined speech. For the imagined
speech run, we performed the same evaluation steps as for the
whispered speech data. Previously, it had been unclear whether
models trained on neural activity during audible speech can be
transferred to imagined speech processes. Imagined speech, in
contrast to both whispered and audible speech, does not involve
any articulator movements of the vocal tract. Figure 4b depicts
five promising example acoustic waveforms resulting from the
real-time synthesis of imagined speech processes. The decoded

speech gating is comparable to the whispered speech condition,
which indicates the transferability of the actual speech model to
imagined speech. As with the whispered speech condition, Fig. 4c
reports the DTW correlation coefficients between decoded trials
and their reference vocalization. For this case, 75 random words
overlapped with the open-loop run. We achieve mean correlation
coefficients of 0.32 ± 0.26 for our proposed method, which is
significantly higher than the chance level of 0.17 ± 0.22 (P < 0.01,
Mann–Whitney U test, n1= 75 and n2= 1000). However, com-
pared to whispered speech, the decoding performance is sig-
nificantly lower (P < 0.001, Mann–Whitney U test, n1= 75 and
n2= 73). The majority of speech segments as identified by VAD
still occurred during the imagined trials (Fig. 4d); however, there
were a larger number of speech segments during the nonspeech
intertrial intervals compared to the whispered condition. This is
likely due, in part, to the inherent difficulty of knowing how the
participant internally performed imagined speaking, in conjunc-
tion with the differences between actual and imagined speech
processes. These results highlight that the models trained on
audible speech can be used to synthesize imagined speech pro-
cesses in real-time. The provided feedback will provide important
queues for allowing the user to learn and adapt to the system, and
is ultimately necessary for a practical prosthesis.

Anatomical and temporal contributions. The design of our real-
time decoder only utilizes neural activity prior to speech pro-
duction for the decoding, as a delay would be introduced other-
wise. The participant was implanted with a total of 11 electrode
shafts containing a total of 119 electrodes. Electrodes were pre-
dominantly implanted in the left frontal and lateral areas, except
for the purple and red electrode shafts in the temporal region

Fig. 4 Decoding results of the proposed method in the closed-loop experimental runs. a Selected examples of synthesized audio waveforms produced
during whispered speech trials. b Selected examples of synthesized audio waveforms produced during imagined speech trials. In both runs, the speech was
reliably produced when the participant was prompted to whisper or imagine to speak, respectively. c Pearson correlation coefficients between time-warped
reference speech trials and closed-loop whispered trials (n1= 73) and closed-loop imagined speech trials (n1= 75), respectively. Chance level (n2= 1000)
is based on randomly selected data from non-speech tasks performed by the participant. Statistical significance, indicated by asterisks (***P < 0.001;
**P < 0.01), was computed using Mann–Whitney U tests. Black horizontal lines correspond to median DTW correlations scores. Boxes define boundaries
between the first and the third quartile. Error bars present the range of data within 1.5 times the interquartile range, and points beyond the range of the
error bars show outliers. d The proportion of decoded and synthesized speech during whispered and imagined trials, respectively, versus non-speech
intertrial intervals.
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(Fig. 5b–d). Features from the 119 electrode contacts across the
five different temporal contexts (−200 to 0ms offset) were selected
based on the correlations of high-gamma power with the speech
energy. For the selected features, we visualize the average absolute
activation across all LDA models, using the methods described by
Haufe et al.35 to analyze the contribution of different functional
areas and temporal context (Fig. 5a). Functional areas were iden-
tified using img_pipe36 and FREESURFER37.

The decoding models predominately rely on high-gamma
activity from 150 to 200 ms prior to the current time point, which
is in accordance with prior research in the role of the frontal
cortex in speech production25. In particular, areas in the inferior
frontal gyrus triangularis (olive green) and opercularis (brown)
showed high activations. These relevant features also include
activations representing the current time point (i.e., 0 ms), such as
the superficial contacts in the orbital gyrus (orange). Electrodes in
the anterior cingular sulcus and gyrus and frontomarginal cortex
(blue) contributed comparatively small activations. Superior
frontal and middle frontal gyrus (green, outer electrodes of beige,
light blue, pink) were used for decoding from 200 to 50 ms prior
to the current time point. Electrode contacts in the anterior
insular (deeper contacts of beige) were not selected for the
decoding. In addition to the aforementioned electrodes likely

involved in speech planning38,39, electrode contacts in the central
sulcus and postcentral gyrus (turquoise), showed high activations
from 200 ms prior up to the current time point, likely reflecting
activity associated with articulator control. Limited activations
were also observed in the superior temporal sulcus (red) and
hippocampal contact (deepest contact of purple).

These activation patterns trained on the open-loop run with
audible speech also consistently decode speech from the
whispered and imagined speaking modes, which point to a role
in speech planning and execution as opposed to the perception of
the participant’s own voice. Differences in neural activation
patterns have been reported for different acoustic and proprio-
ceptive feedback conditions40,41, but our decoding approach still
identifies patterns that are similar enough across the three
speaking modes to generate consistently gated synthesized
output. This further implies that speech production and imagined
speech production share a common neural substrate to some
extent, which has also been proposed previously42.

Discussion
Here, we demonstrated that intracranial recordings can be used to
synthesize imagined speech processes in real-time as continuous
acoustic feedback. Through the successful use of sEEG electrodes,

Fig. 5 Anatomical and temporal contributions. a Spatiotemporal decoder activations averaged across 9 classes and 40 frequency bins. The colored
triangles at the top of the panel correspond to the colored electrode shafts in (b–d). The left edge of each triangle represents the deepest contact of a
respective colored electrode shaft and the most superficial contact the same shaft is represented at the right edge, with the intermediate contacts ordered
longitudinally in between. The activations (i.e., transformed average model weights) for the decoding models at each electrode and temporal lag are
indicated by the vertical bars below the corresponding colored triangle. Darker red indicates higher absolute activations. The activations indicate that
inferior frontal and middle frontal cortices are predominately employed in decoding. b–d Different views of electrode locations for the participant: b left
lateral, c frontal, d superior.
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we establish feasibility for long-term implantation, as these elec-
trodes are comparable to those used for Deep Brain Stimulation
(DBS). DBS procedures are commonplace for a variety of neu-
rological conditions (e.g., Parkinson’s disease, essential tremor,
dystonia) and the electrodes routinely remain implanted and
effective for decades43. Furthermore, the implantation of such
stereotactic depth electrodes has a low-risk profile, as a cra-
niotomy is not required44–46.

Our decoding models rely predominately on high-gamma
features from the frontal cortex and motor areas, which have been
implicated in existing models of speech production38,47,48. This
also offers an explanation as to the transferability of the decoding
models to whispered and imagined speech. While these three
processes are clearly different in terms of acoustic and proprio-
ceptive feedback41, our results indicate that they share enough
neural activity to enable model transfer. The selected areas can
also function as a blueprint for future implants in patient cohorts.

Our approach still requires audible speech for training the
decoding models. Several possibilities exist for moving towards
clinical practice where pre-recorded speech from the patient may
not be available. First, electrodes could be implanted in the early
stages of neurodegenerative disease (e.g., ALS) such that training
data can be acquired while the patient still has the capacity for
speech. Alternately, surrogate data could be created by asking the
patient to imagine speaking along with previously recorded audio,
from the patient or potentially other speakers.

In this study, we have intentionally focused on a simplistic
decoding approach specifically to achieve the proof-of-concept of
real-time acoustic feedback from neural activity and thereby
tackle closed-loop synthesis of imagined speech. While the syn-
thesized output was able to effectively generate and gate audible
speech in real-time with utterance timings comparable to the
vocalized speech reference, the output is not yet intelligible and
quality is expectedly inferior to prior results based on offline
decoding of audible and whispered speech6–8. For a demonstra-
tion of the real-time synthesis, see Supplementary Movie 1.
However, the fact that our models were trained on actual speech
and were successful in triggering the synthesized output during
imagined trials in real-time, provides a strong indication that we
have tapped into common underlying processes that can be
further exploited by utilizing more sophisticated decoders, such as
deep neural networks (DNN)6,8,49. While certain trained DNNs
are capable of real-time execution, it is envisioned that the user
and system will need to co-adapt to optimize performance. Thus,
there is utility in continuing to explore simplified decoding
models that can provide some degree of real-time adaptation as
we continue to understand the nature and dynamics of the
underlying speech processes and human factors of the system.
The immediate feedback provided by our system will allow
patients to learn to operate the prosthesis and improve synthesis
quality gradually. In addition, we only investigated the produc-
tion of individual, prompted words. In the future, spontaneous
speech processes need to be investigated to move toward natural
conversation.

Our approach demonstrates real-time speech synthesis from
imagined neural activity and provides a framework for further
testing and development. These initial results of decoding ima-
gined speech in real-time represent an important step forward
toward a practical speech neuroprosthesis for those who are
unable to speak. By synthesizing imagined speech processes, we
are able to actively engage the participant in the imagined speech
experiment, effectively allowing the participant to monitor the
speech production process and adjust accordingly40. This process
will be critical as the user learns to use and control the neuro-
prosthetic, and eventually for co-adaptation between the user and
system50. These initial results provide evidence that neural

activity during speech imagery can be used in the development of
future speech neuroprosthesis.

Methods
Participant. In the medical treatment of a severe epilepsy patient (female, 20 years
old) 11 sEEG electrode shafts, with 8 to 18 contacts, were implanted into the left
hemisphere. Electrodes were implanted to determine the epileptic foci and map
cortical function to identify critical areas for which resections might result in long-
term functional deficits. During this monitoring process, the patient agreed to
participate in scientific experiments. The patient gave written informed consent
and participation in the experiment was on a voluntary basis. Participation could
be terminated at any time by the patient without giving any reason. The experi-
ment design was approved by the IRB of Maastricht University and Epilepsy
Center Kempenhaeghe and was conducted in a clinical environment under the
supervision of experienced healthcare staff. The participant was a native speaker
of Dutch.

Electrode locations. Electrode placement was purely determined based on clinical
needs and in no way influenced by the research. Electrode locations were deter-
mined by co-registering a pre-operative T1-weighted MRI with a postoperative CT
scan of the participant. Co-registration and anatomical labeling were performed
using FREESURFER37 and img_pipe36, where anatomical labels of the contact
locations were assigned after cortical parcellation according to the Destrieux
atlas51.

Data recording. The implanted platinum-iridium sEEG electrodes (Microdeep
intracerebral electrodes; Dixi Medical, Beçanson, France) were 0.8 mm in diameter
and containing 8–18 contacts. Electrode contacts were 2 mm in length and had
1.5 mm inter-contact distance.

Activity from stereotactic EEG electrodes was recorded using a Micromed SD
LTM amplifier (Micromed S.p.A., Treviso, Italy) with 128 channels, referenced to a
common white matter electrode. Data were digitized at 2048 Hz. Audio data were
recorded using the integrated microphone of the recording notebook (HP
Probook) at 48 kHz. Audio data and neural signals were synchronized using
LabStreamingLayer20.

Task. The experimental task consisted of three sequential experimental runs. For
the first run, we acquired open-loop neural signals and audibly vocalized speech in
parallel as training data to optimize the parameters of the closed-loop synthesizer.
For each trial in the run, the patient read individual Dutch words aloud as they
were presented sequentially on a monitor. Each word was shown for 2 s with an
intertrial interval of 1 s. Words were from the Dutch language and were drawn
randomly from a set comprised of phonetically balanced words from the IFA
dataset19 and the numbers 1–10. In each experimental run, a total of 100 words was
prompted resulting in ~5 min of data per experimental run.

Subsequently, two closed-loop runs were performed. The patient repeated the
open-loop task using whispered and imagined speech, in respective runs, while the
closed-loop system continuously decoded the neural signals and provided acoustic
feedback in real-time. All participant–system interactions were logged for further
offline analysis and evaluation of the experimental results.

Neural signal processing. In line with prior studies6,28,30, we focused on neural
activity in the high-gamma (70–170 Hz) band, which is known to contain highly
localized information relevant to speech22,23 and language52 processes. High-
gamma activity also provides detailed information about speech perception pro-
cesses in ECoG53,54 and stereotactic EEG49. For the extraction of the high-gamma
band and for the attenuation of the first and second harmonic of the 50-Hz line
noise, we used an IIR bandpass filter and two elliptic IIR notch filters, respectively,
each having a filter order of 8. The resulting signals were segmented into 50 ms
windows with a 10 ms frameshift to capture the complex dynamics of speech
processes. For each of these windows, we calculated signal power and apply a
natural logarithm transform to make the distribution more Gaussian prior to
decoding. In addition, each window was augmented with context information up to
−200 ms in the past to integrate temporal changes in the neural dynamics. Since
we are targeting a real-time system response, context stacking of future frames55 is
not utilized to avoid additional latency.

Audio signal processing. Time-aligned recordings of spoken speech captured by
an integrated microphone in the research laptop were transformed to logarithmic
mel-scaled spectral features using the following procedure: We first downsampled
the audio data to 16 kHz and segmented the signal into overlapping windows with
a window length of 16 ms and a frameshift of 10 ms. Subsequently, we used tri-
angular filter banks to compress the frequency range based on the perception of
pitches by means of the mel scale. This preprocessing procedure aligned sEEG
features and spectral acoustic features while preserving speech-relevant informa-
tion, and results for each window in 40 logarithmic mel-scaled spectral coefficients.

Based upon prior research28, we discretized the feature space of the spectral
coefficients to avoid the unbounded characteristics of regression tasks, which can
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result in unintended large amplitude spikes in the audio feedback caused by neural
fluctuations. As the experiment design contained only single words, the
distribution of windows representing speech and silence frames was highly
imbalanced in favor of silence and therefore we incorporated a quantization based
on the curve value of the logistic function to find suitable interval borders:

f ðxÞ ¼ jminspecj þmaxspec
1þ e�k�x � jminspecj ð1Þ

Here, minspec and maxspec represent the minimum and maximum power value for
each spectral bin and the hyperparameter k defines the growth rate. Using a
uniform spacing for the independent variable x results in interval borders which
are prioritizing both coefficients in the low-frequency range, such as silence, as well
as in higher, speech-related, frequencies and are unaffected by their imbalanced
distribution.

For this study, we used a fixed number of nine intervals for each spectral bin
and a constant growth rate of k= 0.5 based on prior experiments with offline
data28.

Classification approach. The mapping from neural data onto spectral coefficients
is relying on information encoded in the high-gamma band. Model training is
designed to identify these correlates with respect to underlying speech processes. In
previous studies, we have used regression approaches as our decoding models6,30 to
enable a conversion directly projecting onto the continuous space of spectral
coefficients. However, we observed substantial amplitude variation in the decoded
acoustic waveform resulting from the unbounded behavior of regressions in con-
junction with large fluctuations in the neural signals. Here, we focus on modeling
strategies that decode waveforms with a constant volume to avoid such unnatural
spikes in loudness. Therefore, we expressed the regression task as a classification
problem: rather than establishing a direct mapping, we discretized the continuous
feature space of each spectral bin into a fixed set of nine energy levels. Individual
classifiers were then used to predict the energy levels in each individual spectral
bin. To recover the speech spectrogram, we applied a dequantization step that
replaces all indices with proper spectral coefficients represented by each interval.
For the classifiers, we utilized a regularized linear discriminant analysis (LDA)
implemented in scikit-learn56. We utilized singular value decomposition as a solver
as it is known to perform well with high-feature dimensionality. The classifiers
were trained on the 150 features with the highest correlation with the audio energy
on the training data. We chose 150 features as a good compromise between the
amount of included information and decoding speed based on prior experience.

Voice activity detection. We reimplemented the energy-based voice activity
detection from the Kaldi speech recognition toolkit34 to distinguish between speech
and nonspeech segments in the decoded audio (Fig. 4d). This approach relies on
the signal energy of mel-frequency cepstral coefficients and classifies individual
frames based on a threshold. The method uses four customizable hyperparameters:
a constant term t for the energy threshold, a scaling factor s for the energy level, the
number of augmented context frames, and a threshold of the required proportion P
of speech frames inside a window. To calculate the threshold T, we take the product
of the mean energy in the frequency cepstrum and the scaling factor and add the
specified constant term:

T ¼ t þ s � 1
N

∑
N

i¼0
E0;i ð2Þ

Here, E0 refers to the first coefficient in the frequency cepstrum and N corresponds
to the number of frames. In the next step, we assign to each frame a number of
temporal context frames leading and lagging the current point to form a window,
where it is possible to have unequal numbers of lagging or leading frames. The
identification of speech frames is based on the ratio of how many frames in each
window are above the threshold. If this ratio is greater than the required proportion
P it gets marked as speech.

We have identified suitable hyperparameters by only considering the audio of
the training data, which we then applied to the decoded audio for evaluation. We
used an energy threshold of 4 with a mean scaling of 0.5. In addition, we limited
the maximum amount of context frames to five on each side and required a ratio of
at least 60% of frames inside a window marked as a speech before being identified
as speech.

Activation maps. To determine which cortical areas contributed to the decision of
individual classes from the linear discriminant analyses, we employed a method
proposed by Haufe et al.35 that transforms weight vectors of linear decoding
models into a form for neurophysiological interpretation. Here, we will briefly
summarize the steps taken to extract neural activation maps from our multivariate
classifiers. Based on the internal weights W of each decoding model i and the
measured neural signals x(n) from the audible experiment run, we infer latent
factors ŝðnÞ by carrying out a simple multiplication:

ŝðnÞi ¼ WT
i � xðnÞ; ð3Þ

where n specifies the number of samples. Here, the latent factors exhibit certain
properties with respect to the supervised classification of target variables. The

method by Haufe et al. shows that activation patterns regarding all target variables
can be extracted in the following way:

Ai ¼ Σx �Wi � Σ�1
ŝi
; ð4Þ

where Σx and Σ�1
ŝ correspond to the covariance matrix of the measured neural

signals and the inverse covariance matrix of the latent factors, respectively. In order
to draw our conclusions regarding the anatomical contributions, we took the mean
absolute activations across all decoding models and interval classes.

Closed-loop architecture. The closed-loop decoder is built upon a node-based
system, in which each node performs the calculations of a self-contained task and
multiple nodes are connected in a directed acyclic network which specifies the
processing chain. Our entire closed-loop system is implemented in custom Python
code. Each node can have an arbitrary number of other nodes feeding input data,
and can itself feed its output to an arbitrary number of other nodes. Data are passed
as two-dimensional matrices, with the first dimension representing time. Nodes do
not need to operate at the same rate, a node can be implemented to output fewer
(e.g., in the case of windowing) or more time steps of data than it accepts as input.
In addition, to optimally take advantage of modern multicore hardware and to
reduce processing delays, nodes can be implemented to output data

Fig. 6 Schematic overview of the proposed closed-loop decoder. Each
node corresponds to one self-contained task, which is connected in an
acyclic network. Rectangular nodes specify actual computations in the
generation of the acoustic waveform, while circular nodes represent output
nodes writing incoming data on disc for offline evaluation. Double-lined
nodes indicate that its (and subsequent) calculations are performed
asynchronously in different processes. The extraction of neural activity is
composed of multiple nodes.
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asynchronously, with calculations being performed in a process different from the
process in which input is received.

Figure 6 shows individual nodes and their connections assembling the closed-
loop decoding pipeline. While the chain of rectangular nodes constitutes the
pathway for the conversion from incoming neural signals to an acoustic waveform,
circular nodes represent output nodes for writing intermediate data to disc for
offline evaluation. In addition, double-lined nodes indicate the starting point for
asynchronous computations of subsequent nodes in different processes. The input
receiver represents a socket that listens for incoming packets from the amplifier via
LabStreamingLayer. The amplifier is configured to send 32 packets of sEEG data
per second. In a first step, any questionable channels (e.g., floating, contaminated,
etc.) are removed by excluding channel indices that have been manually identified
prior to model training (no channels were identified for exclusion in the current
study). All filters for extracting log power from the high-gamma band are designed
to work on streamed data by preserving the filter state. The decoding models
predict spectral interval classes independently for each frame and the
dequantization uncovers the spectral coefficients for 10 ms per frame. The
Griffin–Lim algorithm is implemented using two ring buffers in order to run
properly for streamed data. The first ring buffer, which is responsible for the input,
stores a limited context of 65 ms of previous frames, while the second ring buffer
carries the output signal, from where the corresponding segment is extracted and
passed to the soundcard wrapper for audible presentation.

In Table 1, we present mean processing times measured on the research laptop
for each individual node in the decoding pipeline to ensure real-time capabilities.
All nodes present low processing costs and do not constitute a bottleneck in the
system. In total, for 10 ms of neural signals, 7.3 ms are needed for the conversion
into an acoustic signal. For the decoding pipeline, we only used one process to
avoid cost-expensive inter-process communication. Output nodes for intermediate
results, on the other hand, operate in dedicated processes. In addition, we set up a
separate process to listen for markers sent during each experiment run to align the
timings of each trial.

Performance metrics. Comparisons between time-aligned pairs of decoded and
original speech spectrograms are determined using the Pearson correlation coef-
ficient. For each spectral bin, we calculate the correlation between both time series
of logarithmic mel-scaled spectral coefficients and compose a final score based on
their mean. In the evaluation of whispered and imagined speech, direct comparison
based on the correlation is not possible as no time-aligned reference is present. We,
therefore, warp the reference data first to obtain an optimized temporal alignment
using dynamic-time warping (DTW). By computing the shortest path based on the
Euclidean distance and rearranging frames of spectral coefficients in the reference
data, we achieve a warped representation with minimal distance. With this warped
representation, the calculation of correlations is possible again. It should be noted
that the time-aligned correlations and time-warped correlations cannot be directly
compared, as the warping artificially maximizes correlations.

Statistics and reproducibility. The differences between our proposed method and
a chance level or the differences between two speaking modes were evaluated by
two-sided Mann–Whitney U test statistics using the scipy stats package (version
1.5.3). We provide the experiment data and the code which can be used to
reproduce the results and figures.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All physiological and empirical data can be obtained from https://osf.io/cng9b/. Note that
we anonymized the patient’s voice. Data to reproduce Fig. 4c, d can be found in the same
repository.

Code availability
Custom code for this research was written in Python 3.6 programming language. Code
for the closed-loop synthesis approach, as well as all analysis scripts can be obtained from
https://github.com/cognitive-systems-lab/closed-loop-seeg-speech-synthesis. This
repository also includes the code for rendering the plots shown in Figs. 3–5. We
conducted the closed-loop experiment on a laptop running Windows 7 and performed
the analysis on an Ubuntu 18.04 computer.
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