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Abstract

This paper presents an evaluation of the performance of
EMG-to-Speech conversion based on convolutional neural
networks. We present an analysis of two different architec-
tures and network design considerations and evaluate CNN-
based systems for their within-session and cross-session
performance. We find that they are able to perform on par
with feedforward neural networks when trained and eval-
uated on a single session and outperform them in cross
session evaluations.

1 Introduction

For most humans, speech is an effortless and natural way
to communicate with other humans. Recent advances in
speech processing and machine learning have extended this
to human-machine interaction as speech-based interfaces in
mobile phones and smart speakers have entered everyday
use. However, despite its efficiency, there are situations in
which audible speech communication is not an option:

e The presence of loud interfering noise, such as on a
factory floor or at an airport, can make speech hard or
impossible to understand.

e In some situations (e.g. a library or in public transport),
audible speech is itself interfering noise and should be
avoided.

e Some people (e.g. Laryngectomees) are simply not able
to produce an audible speech signal unaided.

In such situations, it would be better to use systems
that do not rely on the presence of an audible speech sig-
nal to function. Such Silent Speech Interfaces (SSIs) in-
stead use a host of other — sometimes multiple — speech-
related biosignals [1] to infer information about speech.
Examples of such SSIs include interfaces based on brain
activity recorded invasively using electrocorticography [2],
ultrasound-based recording of tongue movements [3], lip
reading with video cameras and, as in this work, muscle
activity recorded using electromyography (EMG).

The SSI presented in this paper extends our previous
work [4, 5] and is based on the recording of muscle ac-
tivity in the face — facial surface Electromyography. It
performs EMG-to-Speech conversion — direct conversion
of facial SEMG data to audible speech. Compared to a
recognition-based approach, this method has several advan-
tages. With direct synthesis, it is possible to transport not
only the textual content of speech, but also paralinguistic in-
formation such as stress and intonation. Additionally, while
recognition systems are limited to a certain vocabulary and
language, a direct conversion system does not suffer from
such limitations. Finally, with such a system, it is possible
to generate output with a low latency, since the system does
not have to wait for some linguistic unit (e.g. a word or
sentence) to be complete before starting output.
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Figure 1: A system overview of our EMG-to-Speech con-
version system.

Figure 2: Electrode numbering for the multichannel array
EMG recording used in this work.

2 System Description

In our previous work, we have shown and evaluated EMG-
to-Speech conversion based on deep neural networks. In
this work, we expand upon our previous work by demon-
strating a system based on convolutional neural networks,
exploiting the structure of EMG array electrodes we use
in our recordings: Our EMG-to-Speech conversion system
uses array electrodes — patches of electrodes arranged in a
grid that can be easily attached to the face.

Convolutional neural networks are neural networks in
which, instead of every neuron of a layer feeding into ev-
ery neuron of the following layer, spatial information can
be taken into consideration: Neurons are arranged in an
n-dimensional grid and convolved with a number of hy-
perrectangular filters with learnable weights. This enables
them to compensate for positional shifts and reduces the
number of parameters that the network needs to learn. Both
of these properties are desirable for EMG-to-Speech con-
version:

o Shift invariance might reduce the influence of shifts in
electrode position. This is especially useful in our case,
as the electrode arrays we use consist of a number of
electrodes that are arranged with fixed positions relative
to each other (Compare Fig. 2).

e The lower number of parameters might help learning
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Figure 3: Architecture of our LeNet-inspired network used to convert SEMG features to MFCCs.

performance. This is important since EMG-to-Speech
conversion, due to the nature of the recording equipment
(electrodes can only be worn for some time before the
signal starts to change due to changes in electrode and
skin condition), is inherently a low-data problem.

The rest of this paper is organized as follows: Section 2
provides an overview of our EMG-to-Speech conversion
system and introduces the network architectures we evalu-
ate. Section 3 provides an overview of evaluation method-
ologies and presents results. Finally, the implications of
these results are discussed in section 4.

Our EMG-to-Speech systems overall structure can be
seen in Fig. 1. First, facial EMG data is recorded using
a multichannel EMG amplifier (OT Bioelletronica EMG-
USB2) at 2048 Hz using two Array electrodes: One 4 x 8
10 mm inter-electrode distance (IED) electrode array on the
cheek and one 8 electrode 5 mm IED strip below the chin.
Signals are measured using chained differential derivation
(Compare electrode numbering in Fig. 2, with channels that
go across a border being dropped), leading to a total of
35 input channels. From these, a set of EMG features is
extracted and stacked (compare section 2.1) into feature
vectors. These EMG feature vectors are converted to au-
dio feature vectors (compare section 2.2) using a neural
network. The resulting audio feature vectors can then con-
verted to an audio waveform for playback using a Mel-Log
Spectrum Approximation (MLSA) filter [6].

For training and evaluating our system, we use a corpus
of parallel audible speech EMG and audio data. Further
details about this data can be found in section 3.1.

2.1 EMG features

To represent a channel of the EMG signal as a series of
feature vectors, we first window it using a 32 ms Blackman
filter, with a window shift of 10 ms (i.e. an overlap of 22 ms).
We then extract a set of time-domain (TD) features [7]:
Low frequency (up to 134 Hz) power

Low frequency (up to 134 Hz) mean

High frequency (above 134 Hz) power

High frequency (above 134 Hz) zero-crossing rate
High frequency (above 134 Hz) rectified mean

These features, extracted for all EMG channels, make
up a single TDO feature vector. We then stack these feature
vectors with a stacking height of 15 frames into both the past

and the future to provide a total of 31 frames of time context,
resulting in the final 7D15 feature vector. While using
recurrent neural networks might seem like a more obvious
approach in this case, it is important to remember that EMG-
to-Speech conversion is generally a low-data problem. This
lack of data means that training more complex networks can
be intractable and that simpler models should be preferred.

2.2 Audio features

Audio is represented in our system as a series of Mel-
frequency Cepstral coefficients (MFCCs) and fundamental
frequency (FO) values. To extract these, we first window the
audio signal (sampled at 16 kHz) with the same parameters
as the EMG signal (window size 32 ms, window shift 10ms,
Blackman window). We then extract MFCCs following
Imai and Abe [6] and FOs using the YIN algorithm [8]. To-
gether, these two feature sequences allow for the resynthesis
of a waveform from features using the MLSA filter.

Note that in this paper, we are only concerned with
optimizing the performance of our system with regards to
MEFCC output quality — FO is not considered, as the focus
of this paper is on intelligibility, which depends primarily
on correctly predicted MFCC values. FO values have no
influence on the metric used for evaluation.

2.3 Network Architectures

We evaluate two different convolutional neural network
architectures: One based on LeNet [9] and another based
on an encoder-decoder structure [10].

Both architectures extract features from both input ar-
rays separately, which are then processed by two fully con-
nected layers to compute the MFCCs. The dimensions of
the input layers are determined by the array sizes and the
input feature dimensions. In our case they are 7 x 4 x 155
for the cheek array and 7 x 1 x 155 for the chin array. The
size of the output layer is determined by the number of
predicted MFCCs. Note that, since our problem is not a
recognition task, but instead a regression task — the last
layer therefore uses a linear activation function.

After we compared several network structures differen-
tiating in layer number, sizes and types on on the corpus’
development set, the LeNet-5 and the encoder-decoder ar-
chitectures were chosen for performing best. Layer sizes
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Figure 4: Architecture of our encoder-decoder neural network used to convert SEMG features to MFCCs.

and activation functions were further empirically tuned to
optimize performance. The networks were trained until the
error on a hold out validation set stopped decreasing.

To train the LeNet-inspired network, we used Adam
[11] with a learning rate of 0.003, 3; of 0.9 and 3, of 0.999.
For training the encoder-decoder architecture a learning
rate of 0.002, B; of 0.9 and 3, of 0.999 was used. Both
architectures were initialized using a He normal initializer
[12]. The mean squared error was used as the loss function
for parameter updates. Training was stopped after the loss
on a hold-out validation set saturated.

The LeNet-inspired architecture consists of two parts,
one feature extractor composed of three convolutional and
two pooling layers and a regression part consisting of two
fully connected layers. The structure of the LeNet-inspired
architecture can be seen in Fig. 3.

The encoder-decoder architecture uses the same regres-
sion part. Its feature extraction part is divided into an en-
coder part that is based on ResNet-32 and a decoder part
consisting of a combination of unpooling an convolutional
layers. Fig. 4 shows the structure of our encoder-decoder
network.

3 Evaluation

For the objective evaluation of the results we use the Mel-
Cepstral Distortion (MCD) score [13], defined as the scaled

euclidean distance between the genuine and predicted MFCCs,

with the first coefficient excluded. Since the MCD is a
distance measure, a lower MCD implies a better feature
mapping. MCD scores have been found to correlate with
subjective estimates of intelligibility.

It is important to note that MCD scores upwards of
5.0 and 6.0 are common when driving speech synthesis as
part of a silent speech interface, as the task of converting
non-audio biosignals to speech differs considerably from
i.e. text-to-speech synthesis or voice conversion.

3.1 Data corpus

The data corpus used holds five sessions from one speaker
with a total of 1950 utterances that consist of 649,983 sam-
ples. Each session is split into a training, development and
test set. A detailed breakdown can be found in Tab. 1. The
development set was used during parameter optimization,
whereas the test holdout was used only for final performance
evaluations. In sum, our corpus contains ~ 88 minutes of

/
training data.
Nb. Utterances Nb. Samples
Session Train Dev Test Train Dev Test
Smalll 140 30 30 32,322 7,589 7,307
Small2 140 30 30 39,876 8,272 7,999
Largel 450 50 40 151,870 16,231 16,296

Large2 413 38 19
Large3 450 50 40

148,029 13,423 6,668
158,324 16,691 14,816

Table 1: Data corpus breakdown
As our baseline, we compare the two convolutional ar-
chitectures with a feedforward deep neural network (DNN)

conversion approach as described in our previous work [4].

3.2 Average Pooling vs. Max-Pooling
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Figure 5: Mel-Cepstral distortions of the LeNet network
with max-pooling and with average pooling. Lower is bet-
ter.

We evaluate two different kinds of pooling layers for
the architectures, max-pooling and average pooling with
regards to session dependent performance using the LeNet-
inspired network. Fig. 5 shows the MCD score of the four
resulting architectures for each session.
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Figure 6: Within-Session Mel-Cepstral distortions for dif-
ferent architectures. Lower is better.

3.3 Within-Session Performance

We compare the session dependent (i.e. training on the train-
ing set of one session and then evaluating the MCD score
when converting the test set of that same session) perfor-
mance of the convolutional architectures and the baseline
DNN. The resulting MCD scores can be seen in Fig. 6.

3.4 Cross-Session Performance

Cross-Session Test Set MCD Scores
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Figure 7: Cross-Session Mel-Cepstral distortions for dif-
ferent architectures. Lower is better.

To evaluate the performance of our CNN approach
on data from entirely unseen sessions, we train a SEMG-
Feature-to-MFCC mapping on the training data of all but
one held out session and evaluate the MCD score on the
test set of the held-out session. The evaluated systems are,
in effect, session independent: The SEMG data being con-
verted to audio features consists of unseen sentences from
an unseen session. Such systems would allow a user to use
EMG-to-Speech conversion without first having to record
data and train a new system — an important step towards
real-time EMG-to-Speech conversion [14]. The results of
this evaluation are shown in Fig. 7.

4 Discussion

In section 3.2, we compared the performance of convolu-
tional neural networks when using different pooling meth-
ods. Where most of the common network architectures

perform best using max-pooling, our networks (which per-
form a regression task instead of a recognition task) per-
form significantly better using average pooling (verified
at a significance level of p=0.05). We suspect that this is
due to max-pooling layers reducing variance, whereas aver-
age pooling layers increase variance instead — the latter is
preferable for varied regression output.

In section 3.3, we compare the performance of our
two CNN architectures to a baseline DNN architecture
when training session-dependent systems. Both the encoder-
decoder architecture as well as the LeNet architecture are
able to perform on par with, though are unable to outper-
form, the DNN. We suspect that this is because the convo-
lutional network is unable to play its strengths here: Within
a session, there is no positional shift of the array, and the
already tuned and properly regularized DNN system gener-
alizes to the relatively similar test set well.

Finally, section 3.4 compares the performance of the
CNNs and the DNN when training in a session-independent
manner, where generalization is harder than in the within-
session case. It can be seen that here, the LeNet approach
manages to significantly (one sided dependent sample t-
test produces p-values smaller than 0.05) outperform the
deep neural network approach for all sessions. The Encoder
approach is unable to consistently significantly outperform
the DNN (though performance is significantly better for all
sessions but session Large2). Note that in every case, the
cross-session performance is still significantly worse than
the performance of a session-dependent system.

4.1 Conclusion

We have presented EMG-to-Speech conversion based on
convolutional neural networks that can perform EMG to
Speech conversion for unseen sentences on unseen sessions.
One of the two systems presented, based on an LeNet archi-
tecture, is able to outperform a plain deep neural network
based conversion system on this task. In the future, we hope
to further improve the performance of our cross-session sys-
tem by using greater amounts of data and by investigation
session normalization e.g. using autoencoding or domain-
adversarial adaptation. We also plan to investigate session
adaptation approaches to quickly create systems that work
very well for a specific speaker based on a background
baseline system — this would be an important step towards
real world EMG-to-Speech conversion systems. For eval-
uation, we would like to perform subjective intelligibility
evaluations using listening tests.
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