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Abstract
This paper presents an analysis of the influence of various
system parameters on the output quality of our neural net-
work based real-time EMG-to-Speech conversion system. This
EMG-to-Speech system allows for the direct conversion of fa-
cial surface electromyographic signals into audible speech in
real time, allowing for a closed-loop setup where users get di-
rect audio feedback. Such a setup opens new avenues for re-
search and applications through co-adaptation approaches. In
this paper, we evaluate the influence of several parameters on
the output quality, such as time context, EMG-Audio delay,
network-, training data- and Mel spectrogram size. The result-
ing output quality is evaluated based on the objective output
quality measure STOI.
Index Terms: silent speech interfaces, surface electromyogra-
phy, speech synthesis

1. Introduction
Speech is the most efficient and natural means for human com-
munication. With advances in speech processing and machine
learning, speech-based interfaces have grown in importance and
entered everyday use. Still, there are situations where audible
spoken communication and interfaces based on acoustic speech
cannot be used:

• In the presence of loud noise, speech communication is
severely hampered or entirely impossible.

• In public places or quiet environments, audible speech is
undesirable.

• For speech impaired people (e.g. Laryngectomees), pro-
ducing audible speech is not possible.

Speech interfaces that do not rely on the presence of an
audible acoustic signal offer an alternative approach to pro-
cessing speech that can mitigate some of the issues mentioned
above. Such Silent Speech Interfaces (SSIs) use a range biosig-
nals other than microphone-recorded audible speech to infer
information from speech [1, 2]. Examples of such biosignals
include Permanent Magnetic or Electromagnetic Articulogra-
phy [3, 4, 5], lip reading from video [6], ultrasound imag-
ing of the speech apparatus [7], electroencephalography- or
functional near infrared spectroscopy based brain-computer-
interfaces [8, 9] and, as in our work, surface electromyogra-
phy [10] – the recording of electrical muscle activity using sur-
face electrodes attached to the face.

Our surface electromyography (sEMG) based EMG-to-
Speech SSI turns recorded sEMG signals directly into audible
speech without an intermediate recognition step. Compared to
a recognize-and-synthesize approach, this direct synthesis ap-
proach has several advantages:

• As there is no recognition vocabulary, the direct syn-
thesis approach allows for operation independent of lan-
guage constraints.

Figure 1: Schematic of our EMG-to-Speech conversion system:
A multichannel EMG signal is recorded from which TDN fea-
tures are extracted. These features are then transformed to Mel
spectra from which an audio waveform can be synthesized.

• It allows for the retention of paralinguistic information,
such as prosody and accentuation.

• The system output could be used to directly control con-
ventional audible speech interface without the need for
modification of those interfaces.

• There is no need to wait until an entire word or even
sentence has been recognized – the system can output
audio immediately.

For several reasons, we consider real-time, low-latency op-
eration a crucial feature to further advance Silent Speech Inter-
faces:

• Practical uses such as silent telephony or speech restora-
tion require that an audible speech signal is generated
during speech production in real time. Additionally, de-
layed auditory feedback is known to inhibit speaking
ability [11], necessitating low-latency operation.

• To train our EMG-to-Speech system, we currently rely
on synchronously recorded sEMG and audible speech
signals. However, it is known that muscle activity can
differs significantly between audible and silent speech
production due to the lack of auditory feedback [12].
This effect causes mismatches when the trained EMG-
to-Speech system is applied to silently produced speech.
Real-time low-latency auditory feedback is likely to
weaken or eliminate the muscle activity differences.

• Due to the aforementioned silent-audible differences and
to reduce setup and training time, it is necessary to ex-
plore means by which the system can adapt to the user
or the user can adapt to the system (co-adaptation). This
requires real-time feedback.

In our previous work, we have described a basic neural
network based EMG-to-Speech conversion system, perform-
ing offline conversion [13, 10], as well as a first real time
system [14]. While original analysis of the real-time system
focused on timing performance, this paper will examine the
impact of different parameters on output quality using small



amounts of training data. This is important as the sEMG signal
varies with speaker characteristics (e.g. tissue, muscles, vocal
apparatus) and electrode positioning. For system performance
reasons, recording training data, training or adapting the system
with that data are currently performed within the same session,
limiting the amount data that can be used.

2. Experiment Setup
2.1. EMG-to-Speech Conversion

The basic setup of our EMG-to-Speech conversion system can
be seen in Figure 1. We record a multichannel surface EMG
signal using an OT Bioelettronica Quattrocento EMG amplifier,
with a 4 x 8 10 mm inter-electrode distance (IED) electrode
array on the users cheek and an 8 electrode 5 mm IED strip
below the chin. The signal is band-pass filtered to 10–900 Hz
and sampled at 2048 Hz for digital processing. For training the
system, an audible speech audio signal is recorded in parallel
with the EMG signals. The two signals are time-synchronized
using the EMG amplifiers trigger output.

2.1.1. EMG Features

From the raw multichannel EMG signal, we extract 32ms win-
dows, with a frame shift shorter than that (examined in sec-
tion 3.2), using a Blackman window. For each such window we
extract a number of time domain (TD) features that have been
shown to work well for EMG-based speech processing [15].

• Low frequency (up to 134 Hz) power

• Low frequency (up to 134 Hz) mean

• High frequency (above 134 Hz) power

• High frequency (above 134 Hz) zero-crossing rate

• High frequency (above 134 Hz) rectified mean

These features are then stacked with N past feature vectors
for time context, resulting in a final set of modified TDN fea-
tures. Note that, unlike standard TDN features, where the cur-
rent frame is stacked with frames from the past and future, we
can only stack with past frames, since future cannot be obtained
for low latency run-on processing.

2.1.2. Audio Features

For the feature transformation, our system represents audio as a
series of Mel spectrogram frames. For training the system, these
features are calculated from the synchronously recorded audio
by first windowing the signal with the same parameters as the
EMG signal. We then compute the magnitude spectrogram for
each window and finally apply a Mel filterbank to obtain the
Mel spectrogram.

To turn a sequence of Mel spectrograms back into an au-
dio waveform for playback, we first invert the Mel-filter. We
then synthesize the waveform using the method proposed by
Griffin and Lim [16] (iteratively generating phase information
starting from a random signal, computing the short-term Fourier
transform and replacing its magnitude spectrum with the input
spectrum), implemented to operate on a continuous stream of
data.

2.1.3. Feature transformation

To convert EMG TDN features to audio Mel features, our sys-
tem uses a 5 layer (input�3 hidden�output) neural network
architecture. The structure follows an hourglass shape with a

bottleneck in the central layer. To prevent overfitting, dropout
regularization is applied to every layer other than the output
layer. The network is trained for up to 80 epochs, with early
stopping being employed to abort training when the validation
set error did not improve for 5 epochs, using stochastic gradient
descent with a learning rate of 0.0001, a momentum of 0.9 and
a mini-batch size of 1024 samples. Input and output features
are normalized to zero mean and unit variance.

2.2. Data

Due to differences in electrode and skin condition, there is a
high amount of variability between different EMG recording
sessions even when signals are recorded from the same sub-
ject. To limit variability, we record the training utterance and
perform the mapping within the same session, i.e. electrode po-
sitions remain fixed. In practice, this limits the amount of data
that can be used to train the system, since every additional ut-
terance adds both recording and training time.

We evaluate our system on two sessions recorded with
the live setup. A session consists of audible speech and
synchronous sEMG signals of read German-accented English
speech from the broadcast news domain. Each session contains
300 utterances with an average length of 4.09 seconds per ut-
terances. From this, 50 utterances were selected for evaluation,
split into 35 utterances for hyperparameter evaluation and 15
utterances for verifying results. From the remaining utterances,
15 were used as validation data and to perform early stopping
during training. To evaluate the effect of adding more train-
ing data on the system, subsets of size 35 (∼2.5 minutes), 135
(∼9 minutes) or 235 (∼16 minutes) of the utterances remaining
after that were used for training the system.

3. Evaluation
3.1. Evaluation measure

To evaluate the performance of different sets of parameters, we
employ the Short-Time Objective Intelligibility (STOI) index, a
measure of time-frequency similarity that is known to correlate
well with subjective intelligibility of noisy speech [17]. The
STOI is calculated as a linear correlation of grouped discrete
Fourier transform bins and ranges from 0 to 1, with higher val-
ues indicating better intelligibility.

3.2. Frame shift and Mel spectrogram dimensionality

Both frame shift and the number of coefficients in the Mel spec-
trogram can affect the output quality of a speech synthesis sys-
tem. In this paper, we evaluate frame shifts of 2 ms, 5 ms and
10 ms. For each, we evaluate the dimensionality, with coeffi-
cient counts of 20, 50, 75 and 100. We evaluate performance
both when directly re-synthesizing audio (i.e. quality just from
extracting features and recreating audio waveforms, with no
EMG-to-Speech mapping involved) as well as when performing
EMG-to-Speech transformation (other parameters held constant
at reasonable defaults – compare the other experiments in this
paper as well as previous work [15] – with an EMG-Audio de-
lay of 50 ms, a training set size of 135 utterances and a 2048
�1024 �2048 neuron network). The results of this evalua-
tion are shown in Figure 2. Clearly, the results on audio re-
synthesized from reference Mel spectra are still vastly better
than the EMG-to-Speech conversion results (note the different
y-axis range). While frame shift and number dimensionality
have an impact on the reference Mel spectrogram, there is lit-
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Figure 2: STOI for different frame shifts and Mel coefficient
counts, evaluated for audio synthesized from reference Mel
spectra (on top) and Mel output of EMG-to-Speech conversion
(on bottom).
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Figure 3: STOI for different stacking heights and EMG-Audio
delays.

tle difference between different frame shifts for the synthesized
Mel spectra, and the effect of the dimensionality of the Mel
spectrogram seems negligible within the examined range.

3.3. EMG context stacking and EMG-Audio delay

The sEMG signal precedes muscle movement with a time delay
depending on muscle and type of movement [18] – this effect is
known as electromechanical delay (EMD). For EMG-to-Speech
conversion, this means that we need to account for a delay be-
tween the EMG and the audio signal. There are two ways in
which this can be done: The EMG signal can be shifted against
the audio signal by some amount (50 ms has been found to be
a good shift to use for EMG-based speech processing [15]), or
stacking can be employed to increase the time context avail-
able within each EMG feature vector so that all important in-
formation for synthesizing audio features for the current frame
is available. In the context of a run-on, real-time system, EMD
can be an advantage for sEMG based SSIs: If the sEMG sig-
nal is processed within the EMD, the system’s outputs audible
speech at the time the listener expects the original voice.

To evaluate the effect of EMG-Audio delay and stacking
height on output quality, we performed EMG-to-Speech con-
version with delays from 25 ms to 150 ms and stacking heights
between 5 and 55 frames, with the other parameters held con-
stant (5 ms frame shift, 135 training utterances, 2048 �1024
�2048 neuron network). The results of this evaluation can be
found in Figure 3.

We find a delay of around 50 ms to be ideal, with no im-
provement beyond 75 ms (on the contrary, beyond a delay of
100 ms, the STOI decreases, likely due to important information
being shifted back outside the stacked feature vector). Higher

Table 1: Neural network layer sizes (compare Figure 1).

Architecture

Layer 1 2 3

x(1) (EMG dimensionality)
x(2) 1024 2048 4096
x(3) 512 1024 2048
x(4) 1024 2048 4096
x(5) (Audio dimensionality)
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Figure 4: STOI for different stacking heights and network con-
figurations (compare section 3.3).

stacking heights dampen the influence of the EMG-Audio de-
lay somewhat. 25 to 35 frames of past context appear to be
sufficient to contain all information useful for EMG-to-Speech
transformation.

3.4. EMG context stacking and network size

In our neural network based offline EMG-to-Speech conversion
system [13], we have found an “hourglass” shaped network ar-
chitecture (modeling a feature extractor – regressor architec-
ture) to work well. Here, we evaluate how different variations of
this architecture perform for given input dimensionalities (e.g.
EMG context stacking heights).

We evaluate three architectures with different amounts of
neurons for the inner layers – compare Table 1 for the spe-
cific sizes used. For each, we evaluate stacking heights of 5 to
55 frames (Other parameters are held constant at 50 ms EMG-
Audio delay, 5 ms frame shift and a train set size of 150 ms).
The results of this evaluation can be seen in Figure 4.

As in section 3.3, increased context seems to slightly im-
prove conversion quality. Increased network size beyond the
2048�1024�2048 (Architecture 1) neuron network seems to
have a detrimental effect.

3.5. Network size and amount of training data

Larger networks means a larger amount of parameters, which
are best trained with more data samples. We evaluate the ef-
fect of adding more training data to our system by performing
EMG-to-Speech conversion with training set sizes of 35 utter-
ances, 135 utterances and 235 utterances, for stacking heights
of both 15 and 45 frames and for the same network configura-
tions and with the same constant parameters as in section 3.4.
Figure 5 shows the results of this evaluation. Adding more data
increases quality, however, even the largest evaluated data set
and high input dimensionality did not allow for the larger net-
work configurations to outperform the smaller ones.
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Figure 5: STOI for different training set sizes and network con-
figurations (compare section 3.3), for a context stacking height
of 15 frames (on top) and 45 frames (on bottom).
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Figure 6: Spectrogram view of the real-time system output (on
top) and reference audio (on bottom).

3.6. Verification of parameters, latency and spectrogram
comparison

We verify our results on 15 utterances held out for this purpose,
selecting parameters found to be good in the rest of this paper:
5 ms frame shift, 50 ms EMG-Audio delay, a stacking height
of 35 frames, 50 Mel coefficients, 250 training utterances and
architecture 1. We find a STOI of ∼0.313, compared to a STOI
of ∼0.338 for the 35 utterance set used in parameter optimiza-
tion, indicating some overfitting of parameters. To increase the
robustness of our results, we plan to collect more data in the
future.

Fig. 6 shows a set of aligned Mel spectrograms of reference
audio and EMG-to-Speech conversion output from the verifica-
tion run. While a large amount of noise remains and details are
lost, it can be seen that the basic low-frequency structure of the
spectrogram can be recreated in real-time.

We additionally measure the latency of our system in this
configuration with a test signal. We find that the delay between
an EMG signal going into the amplifier and the system produc-
ing an audio response is ∼79 ms (measurement repeated five
times). Accounting for EMD, this is well within the range of
allowable delays for live speech feedback.

4. Discussion
Creating an EMG-based speech interface that can be trained and
used within one session and that runs in real time requires trade-
offs.

In section 3.2 we examined the influence of frame shift on
output quality. Our analysis of synthesis from the reference Mel
spectra shows that, for high-quality input data, a frame shift of
10 ms is a good choice. For the synthesized Mel spectrograms,
there is little difference. Overall, a shift of 5 ms seems like a
reasonable choice for further experiments. The dimensionality
of the Mel spectrogram seems to have little influence on output
quality beyond 50 coefficients and even less influence for Mel
spectra generated from EMG.

Section 3.3 explored the relationship between EMG-Audio
delay and stacking height. We find that more context is benefi-
cial, but this is, of course, at the price of a higher input feature
dimensionality. Compared to Jou et al. [15], we too find a delay
of around 50 ms but possibly up to 75 ms to give best results.
the implications of an increased delay (and thus, increased fu-
ture context) on latency remain to be investigated.

We further investigated the effects of context stacking in
sections 3.4 and 3.5, again finding that adding more context
has a positive effect on output quality. We also find that the
learning behaviour of our different network architectures does
not follow a clear pattern with regards to their size, leading us
to believe that, while the current architectures do perform well
for Mel-Frequency Cepstral Coefficients and larger sessions, a
close look at their performance with regards to Mel spectrum
output on small data sets might be necessary.

Adding more training data to a machine learning system
is often the easiest and most fruitful way to improve perfor-
mance. In the case of our EMG-to-Speech transformation sys-
tem, it is not that simple: As the sEMG signal is highly session-
dependent, all data that is used to train a system for a session
must presently be recorded in that session, meaning that any
additional data increases pre-use recording and training time.
In section 3.5, we found that adding more data improved per-
formance. While initially, a small amount of training data may
be preferable, collecting a larger amount of training data may be
a good way to increase system robustness. Other possible so-
lutions that we will explore in the future are signal level adap-
tation [19] and initializing the real-time system with session-
independent models [20] to use the incoming training data for
unsupervised adaptation during run-time.

Finally, visual and aural inspections of system output re-
veal a large amount of background noise in the system output.
One factor contributing to this may be due to within-session
changes in signal quality, either gradual (e.g. drift in electrode-
skin impedance) or sudden (e.g. partial electrode detachment).
While we already try to lessen the impact of such problems (e.g.
by using a high-pass filter for DC offset removal), it may be pru-
dent to further investigate methods by which such changes can
be detected and compensated for.

5. Conclusion

In this paper, we have given a brief overview of our real-time
EMG-to-Speech conversion system. We have examined how
different parameters influence the output quality of this sys-
tem and discussed the trade-offs involved in converting facial
sEMG data to audible speech in real time and with a latency
short enough that, accounting for EMD, audio output is near
instant. In the future, we hope to explore the new applications
and research into co-adaptation that were not possible with an
offline batch conversion system.
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